BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 10883336)

  • 1. Intracranial pressure processing with artificial neural networks: prediction of ICP trends.
    Swiercz M; Mariak Z; Krejza J; Lewko J; Szydlik P
    Acta Neurochir (Wien); 2000; 142(4):401-6. PubMed ID: 10883336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Analysis of intracranial pressure signals using artificial neural networks].
    Mariak Z; Swiercz M; Krejza J; Lewko J; Lyson T
    Neurol Neurochir Pol; 2000; 34(6):1209-23. PubMed ID: 11317497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracranial pressure processing with artificial neural networks: classification of signal properties.
    Mariak Z; Swiercz M; Krejza J; Lewko J; Lyson T
    Acta Neurochir (Wien); 2000; 142(4):407-11; discussion 411-2. PubMed ID: 10883337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial neural network based intracranial pressure mean forecast algorithm for medical decision support.
    Zhang F; Feng M; Pan SJ; Loy LY; Guo W; Zhang Z; Chin PL; Guan C; King NK; Ang BT
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7111-4. PubMed ID: 22255977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural network technique for detecting emergency states in neurosurgical patients.
    Swiercz M; Mariak Z; Lewko J; Chojnacki K; Kozlowski A; Piekarski P
    Med Biol Eng Comput; 1998 Nov; 36(6):717-22. PubMed ID: 10367462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial neural networks applied to forecasting time series.
    Montaño Moreno JJ; Palmer Pol A; Muñoz Gracia P
    Psicothema; 2011 Apr; 23(2):322-9. PubMed ID: 21504688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Artificial neural network forecasting method in monitoring technique by spectrometric oil analysis].
    Yang YW; Chen G; Yang YW; Chen G
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Aug; 25(8):1339-43. PubMed ID: 16329517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concurrent, Performance-Based Methodology for Increasing the Accuracy and Certainty of Short-Term Neural Prediction Systems.
    Milić M; Milojković J; Marković I; Nikolić P
    Comput Intell Neurosci; 2019; 2019():9323482. PubMed ID: 31065257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two Different Points of View through Artificial Intelligence and Vector Autoregressive Models for Ex Post and Ex Ante Forecasting.
    Aydin AD; Caliskan Cavdar S
    Comput Intell Neurosci; 2015; 2015():409361. PubMed ID: 26550010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward automatic time-series forecasting using neural networks.
    Yan W
    IEEE Trans Neural Netw Learn Syst; 2012 Jul; 23(7):1028-39. PubMed ID: 24807130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial neural networks improve the prediction of mortality in intracerebral hemorrhage.
    Edwards DF; Hollingsworth H; Zazulia AR; Diringer MN
    Neurology; 1999 Jul; 53(2):351-7. PubMed ID: 10430425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Algorithms of artificial neural networks--practical application in medical science].
    Stefaniak B; Cholewiński W; Tarkowska A
    Pol Merkur Lekarski; 2005 Dec; 19(114):819-22. PubMed ID: 16521432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving neural networks prediction accuracy using particle swarm optimization combiner.
    Elragal HM
    Int J Neural Syst; 2009 Oct; 19(5):387-93. PubMed ID: 19885966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Online prediction of onsets of seizure-like events in hippocampal neural networks using wavelet artificial neural networks.
    Chiu AW; Kang EE; Derchansky M; Carlen PL; Bardakjian BL
    Ann Biomed Eng; 2006 Feb; 34(2):282-94. PubMed ID: 16450192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting symptomatic cerebral vasospasm after aneurysmal subarachnoid hemorrhage with an artificial neural network in a pediatric population.
    Skoch J; Tahir R; Abruzzo T; Taylor JM; Zuccarello M; Vadivelu S
    Childs Nerv Syst; 2017 Dec; 33(12):2153-2157. PubMed ID: 28852853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemometrics-assisted simultaneous voltammetric determination of ascorbic acid, uric acid, dopamine and nitrite: application of non-bilinear voltammetric data for exploiting first-order advantage.
    Gholivand MB; Jalalvand AR; Goicoechea HC; Skov T
    Talanta; 2014 Feb; 119():553-63. PubMed ID: 24401455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
    Yang J; Singh H; Hines EL; Schlaghecken F; Iliescu DD; Leeson MS; Stocks NG
    Artif Intell Med; 2012 Jun; 55(2):117-26. PubMed ID: 22503644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A modified artificial neural network based prediction technique for tropospheric radio refractivity.
    Javeed S; Alimgeer KS; Javed W; Atif M; Uddin M
    PLoS One; 2018; 13(3):e0192069. PubMed ID: 29494609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new index derived from the cerebrovascular pressure transmission and correlated with consciousness recovery in severely head-injured intensive care patients.
    Roustan JP; Neveu D; Falquet Y; Barral L; Chardon P; Capdevila X
    Anesth Analg; 2009 Dec; 109(6):1883-91. PubMed ID: 19923517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An artificial neural network (ANN)-based lung-tumor motion predictor for intrafractional MR tumor tracking.
    Yun J; Mackenzie M; Rathee S; Robinson D; Fallone BG
    Med Phys; 2012 Jul; 39(7):4423-33. PubMed ID: 22830775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.