BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 10883337)

  • 1. Intracranial pressure processing with artificial neural networks: classification of signal properties.
    Mariak Z; Swiercz M; Krejza J; Lewko J; Lyson T
    Acta Neurochir (Wien); 2000; 142(4):407-11; discussion 411-2. PubMed ID: 10883337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Analysis of intracranial pressure signals using artificial neural networks].
    Mariak Z; Swiercz M; Krejza J; Lewko J; Lyson T
    Neurol Neurochir Pol; 2000; 34(6):1209-23. PubMed ID: 11317497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracranial pressure processing with artificial neural networks: prediction of ICP trends.
    Swiercz M; Mariak Z; Krejza J; Lewko J; Szydlik P
    Acta Neurochir (Wien); 2000; 142(4):401-6. PubMed ID: 10883336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural network technique for detecting emergency states in neurosurgical patients.
    Swiercz M; Mariak Z; Lewko J; Chojnacki K; Kozlowski A; Piekarski P
    Med Biol Eng Comput; 1998 Nov; 36(6):717-22. PubMed ID: 10367462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
    Yang J; Singh H; Hines EL; Schlaghecken F; Iliescu DD; Leeson MS; Stocks NG
    Artif Intell Med; 2012 Jun; 55(2):117-26. PubMed ID: 22503644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of EEG signals using neural network and logistic regression.
    Subasi A; Erçelebi E
    Comput Methods Programs Biomed; 2005 May; 78(2):87-99. PubMed ID: 15848265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A classifier based on the artificial neural network approach for cardiologic auscultation in pediatrics.
    Bhatikar SR; DeGroff C; Mahajan RL
    Artif Intell Med; 2005 Mar; 33(3):251-60. PubMed ID: 15811789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NNERVE: neural network extraction of repetitive vectors for electromyography--Part I: Algorithm.
    Hassoun MH; Wang C; Spitzer AR
    IEEE Trans Biomed Eng; 1994 Nov; 41(11):1039-52. PubMed ID: 8001993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracranial pressure wave morphological classification: automated analysis and clinical validation.
    Nucci CG; De Bonis P; Mangiola A; Santini P; Sciandrone M; Risi A; Anile C
    Acta Neurochir (Wien); 2016 Mar; 158(3):581-8; discussion 588. PubMed ID: 26743919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers.
    Mavroforakis ME; Georgiou HV; Dimitropoulos N; Cavouras D; Theodoridis S
    Artif Intell Med; 2006 Jun; 37(2):145-62. PubMed ID: 16716579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method for processing of continuous intracranial pressure signals.
    Eide PK
    Med Eng Phys; 2006 Jul; 28(6):579-87. PubMed ID: 16275153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feature-based classification of myoelectric signals using artificial neural networks.
    Gallant PJ; Morin EL; Peppard LE
    Med Biol Eng Comput; 1998 Jul; 36(4):485-9. PubMed ID: 10198534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial neural network based intracranial pressure mean forecast algorithm for medical decision support.
    Zhang F; Feng M; Pan SJ; Loy LY; Guo W; Zhang Z; Chin PL; Guan C; King NK; Ang BT
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7111-4. PubMed ID: 22255977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lung sound classification using cepstral-based statistical features.
    Sengupta N; Sahidullah M; Saha G
    Comput Biol Med; 2016 Aug; 75():118-29. PubMed ID: 27286184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. k-Shape clustering for extracting macro-patterns in intracranial pressure signals.
    Martinez-Tejada I; Riedel CS; Juhler M; Andresen M; Wilhjelm JE
    Fluids Barriers CNS; 2022 Feb; 19(1):12. PubMed ID: 35123535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What can artificial neural networks teach us about neurodegenerative disorders with extrapyramidal features?
    Litvan I; DeLeo JM; Hauw JJ; Daniel SE; Jellinger K; McKee A; Dickson D; Horoupian DS; Lantos PL; Tabaton M
    Brain; 1996 Jun; 119 ( Pt 3)():831-9. PubMed ID: 8673495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An effective approach to classify epileptic EEG signal using local neighbor gradient pattern transformation methods.
    Sairamya NJ; Thomas George S; Balakrishnan R; Subathra MSP
    Australas Phys Eng Sci Med; 2018 Dec; 41(4):1029-1046. PubMed ID: 30374770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using neural networks for processing biologic signals.
    Sabbatini RM
    MD Comput; 1996; 13(2):165-72. PubMed ID: 8684280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer vision-based method for classification of wheat grains using artificial neural network.
    Sabanci K; Kayabasi A; Toktas A
    J Sci Food Agric; 2017 Jun; 97(8):2588-2593. PubMed ID: 27718230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A neural-network-based detection of epilepsy.
    Nigam VP; Graupe D
    Neurol Res; 2004 Jan; 26(1):55-60. PubMed ID: 14977058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.