BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 10883818)

  • 1. Fragmentation chemistry of [M + Cu]+ peptide ions containing an N-terminal arginine.
    Shields SJ; Bluhm BK; Russell DH
    J Am Soc Mass Spectrom; 2000 Jul; 11(7):626-38. PubMed ID: 10883818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence of C-terminal residue exclusion in peptide fragmentation by ESI and MALDI tandem mass spectrometry.
    Dupré M; Cantel S; Martinez J; Enjalbal C
    J Am Soc Mass Spectrom; 2012 Feb; 23(2):330-46. PubMed ID: 22095165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fragmentation pathways of N(G)-methylated and unmodified arginine residues in peptides studied by ESI-MS/MS and MALDI-MS.
    Gehrig PM; Hunziker PE; Zahariev S; Pongor S
    J Am Soc Mass Spectrom; 2004 Feb; 15(2):142-9. PubMed ID: 14766281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylated serine and threonine residues promote site-specific fragmentation of singly charged, arginine-containing peptide ions.
    Gehrig PM; Roschitzki B; Rutishauser D; Reiland S; Schlapbach R
    Rapid Commun Mass Spectrom; 2009 May; 23(10):1435-45. PubMed ID: 19353557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid influence on copper binding to peptides: cysteine versus arginine.
    Wu Z; Fernandez-Lima FA; Russell DH
    J Am Soc Mass Spectrom; 2010 Apr; 21(4):522-33. PubMed ID: 20138783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative studies of 193-nm photodissociation and TOF-TOFMS analysis of bradykinin analogues: the effects of charge site(s) and fragmentation timescales.
    Morgan JW; Russell DH
    J Am Soc Mass Spectrom; 2006 May; 17(5):721-9. PubMed ID: 16540342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of [b(n-1) + OH + H]+ ion structural analogs by solution-phase chemistry.
    Sharp JS; Tomer KB
    J Am Soc Mass Spectrom; 2005 May; 16(5):607-21. PubMed ID: 15862763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C-terminal amino acid residue loss for deprotonated peptide ions containing glutamic acid, aspartic acid, or serine residues at the C-terminus.
    Li Z; Yalcin T; Cassady CJ
    J Mass Spectrom; 2006 Jul; 41(7):939-49. PubMed ID: 16810639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dehydration versus deamination of N-terminal glutamine in collision-induced dissociation of protonated peptides.
    Neta P; Pu QL; Kilpatrick L; Yang X; Stein SE
    J Am Soc Mass Spectrom; 2007 Jan; 18(1):27-36. PubMed ID: 17005415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors Affecting the Production of Aromatic Immonium Ions in MALDI 157 nm Photodissociation Studies.
    DeGraan-Weber N; Ashley DC; Keijzer K; Baik MH; Reilly JP
    J Am Soc Mass Spectrom; 2016 May; 27(5):834-46. PubMed ID: 26926443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fragmentation reactions of deprotonated peptides containing proline. The proline effect.
    Harrison AG; Young AB
    J Mass Spectrom; 2005 Sep; 40(9):1173-86. PubMed ID: 16041740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide photodissociation at 157 nm in a linear ion trap mass spectrometer.
    Kim TY; Thompson MS; Reilly JP
    Rapid Commun Mass Spectrom; 2005; 19(12):1657-65. PubMed ID: 15915476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective extraction and characterization of a histidine-phosphorylated peptide using immobilized copper(II) ion affinity chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Napper S; Kindrachuk J; Olson DJ; Ambrose SJ; Dereniwsky C; Ross AR
    Anal Chem; 2003 Apr; 75(7):1741-7. PubMed ID: 12705611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of positive and negative ion collision-induced dissociation for model heptapeptides with one basic residue.
    Pu D; Clipston NL; Cassady CJ
    J Mass Spectrom; 2010 Mar; 45(3):297-305. PubMed ID: 20127747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Products of Cu(II)-catalyzed oxidation of alpha-synuclein fragments containing M1-D2 and H50 residues in the presence of hydrogen peroxide.
    Kowalik-Jankowska T; Rajewska A; Jankowska E; Grzonka Z
    Dalton Trans; 2008 Feb; (6):832-8. PubMed ID: 18239841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide derivatization as a strategy to form fixed-charge peptide radicals.
    Karnezis A; Barlow CK; O'Hair RA; McFadyen WD
    Rapid Commun Mass Spectrom; 2006; 20(19):2865-70. PubMed ID: 16941727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathways of peptide ion fragmentation induced by vacuum ultraviolet light.
    Cui W; Thompson MS; Reilly JP
    J Am Soc Mass Spectrom; 2005 Aug; 16(8):1384-98. PubMed ID: 15979330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the effects of ionization mechanism, analyte concentration, and ion "cool-times" on the internal energies of peptide ions produced by electrospray and atmospheric pressure matrix-assisted laser desorption ionization.
    Konn DO; Murrell J; Despeyroux D; Gaskell SJ
    J Am Soc Mass Spectrom; 2005 May; 16(5):743-51. PubMed ID: 15862775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide backbone fragmentation initiated by side-chain loss at cysteine residue in matrix-assisted laser desorption/ionization in-source decay mass spectrometry.
    Asakawa D; Smargiasso N; Quinton L; De Pauw E
    J Mass Spectrom; 2013 Mar; 48(3):352-60. PubMed ID: 23494792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific rearrangement reactions of acetylated lysine containing peptide bn (n = 4-7) ion series.
    Atik AE; Hernandez O; Maître P; Yalcin T
    J Mass Spectrom; 2014 Dec; 49(12):1290-7. PubMed ID: 25476947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.