These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 10883818)
1. Fragmentation chemistry of [M + Cu]+ peptide ions containing an N-terminal arginine. Shields SJ; Bluhm BK; Russell DH J Am Soc Mass Spectrom; 2000 Jul; 11(7):626-38. PubMed ID: 10883818 [TBL] [Abstract][Full Text] [Related]
2. Occurrence of C-terminal residue exclusion in peptide fragmentation by ESI and MALDI tandem mass spectrometry. Dupré M; Cantel S; Martinez J; Enjalbal C J Am Soc Mass Spectrom; 2012 Feb; 23(2):330-46. PubMed ID: 22095165 [TBL] [Abstract][Full Text] [Related]
3. Fragmentation pathways of N(G)-methylated and unmodified arginine residues in peptides studied by ESI-MS/MS and MALDI-MS. Gehrig PM; Hunziker PE; Zahariev S; Pongor S J Am Soc Mass Spectrom; 2004 Feb; 15(2):142-9. PubMed ID: 14766281 [TBL] [Abstract][Full Text] [Related]
4. Phosphorylated serine and threonine residues promote site-specific fragmentation of singly charged, arginine-containing peptide ions. Gehrig PM; Roschitzki B; Rutishauser D; Reiland S; Schlapbach R Rapid Commun Mass Spectrom; 2009 May; 23(10):1435-45. PubMed ID: 19353557 [TBL] [Abstract][Full Text] [Related]
5. Amino acid influence on copper binding to peptides: cysteine versus arginine. Wu Z; Fernandez-Lima FA; Russell DH J Am Soc Mass Spectrom; 2010 Apr; 21(4):522-33. PubMed ID: 20138783 [TBL] [Abstract][Full Text] [Related]
6. Comparative studies of 193-nm photodissociation and TOF-TOFMS analysis of bradykinin analogues: the effects of charge site(s) and fragmentation timescales. Morgan JW; Russell DH J Am Soc Mass Spectrom; 2006 May; 17(5):721-9. PubMed ID: 16540342 [TBL] [Abstract][Full Text] [Related]
7. Formation of [b(n-1) + OH + H]+ ion structural analogs by solution-phase chemistry. Sharp JS; Tomer KB J Am Soc Mass Spectrom; 2005 May; 16(5):607-21. PubMed ID: 15862763 [TBL] [Abstract][Full Text] [Related]
8. C-terminal amino acid residue loss for deprotonated peptide ions containing glutamic acid, aspartic acid, or serine residues at the C-terminus. Li Z; Yalcin T; Cassady CJ J Mass Spectrom; 2006 Jul; 41(7):939-49. PubMed ID: 16810639 [TBL] [Abstract][Full Text] [Related]
9. Dehydration versus deamination of N-terminal glutamine in collision-induced dissociation of protonated peptides. Neta P; Pu QL; Kilpatrick L; Yang X; Stein SE J Am Soc Mass Spectrom; 2007 Jan; 18(1):27-36. PubMed ID: 17005415 [TBL] [Abstract][Full Text] [Related]
10. Factors Affecting the Production of Aromatic Immonium Ions in MALDI 157 nm Photodissociation Studies. DeGraan-Weber N; Ashley DC; Keijzer K; Baik MH; Reilly JP J Am Soc Mass Spectrom; 2016 May; 27(5):834-46. PubMed ID: 26926443 [TBL] [Abstract][Full Text] [Related]
11. Fragmentation reactions of deprotonated peptides containing proline. The proline effect. Harrison AG; Young AB J Mass Spectrom; 2005 Sep; 40(9):1173-86. PubMed ID: 16041740 [TBL] [Abstract][Full Text] [Related]
12. Peptide photodissociation at 157 nm in a linear ion trap mass spectrometer. Kim TY; Thompson MS; Reilly JP Rapid Commun Mass Spectrom; 2005; 19(12):1657-65. PubMed ID: 15915476 [TBL] [Abstract][Full Text] [Related]
13. Selective extraction and characterization of a histidine-phosphorylated peptide using immobilized copper(II) ion affinity chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Napper S; Kindrachuk J; Olson DJ; Ambrose SJ; Dereniwsky C; Ross AR Anal Chem; 2003 Apr; 75(7):1741-7. PubMed ID: 12705611 [TBL] [Abstract][Full Text] [Related]
14. A comparison of positive and negative ion collision-induced dissociation for model heptapeptides with one basic residue. Pu D; Clipston NL; Cassady CJ J Mass Spectrom; 2010 Mar; 45(3):297-305. PubMed ID: 20127747 [TBL] [Abstract][Full Text] [Related]
15. Products of Cu(II)-catalyzed oxidation of alpha-synuclein fragments containing M1-D2 and H50 residues in the presence of hydrogen peroxide. Kowalik-Jankowska T; Rajewska A; Jankowska E; Grzonka Z Dalton Trans; 2008 Feb; (6):832-8. PubMed ID: 18239841 [TBL] [Abstract][Full Text] [Related]
16. Peptide derivatization as a strategy to form fixed-charge peptide radicals. Karnezis A; Barlow CK; O'Hair RA; McFadyen WD Rapid Commun Mass Spectrom; 2006; 20(19):2865-70. PubMed ID: 16941727 [TBL] [Abstract][Full Text] [Related]
17. Pathways of peptide ion fragmentation induced by vacuum ultraviolet light. Cui W; Thompson MS; Reilly JP J Am Soc Mass Spectrom; 2005 Aug; 16(8):1384-98. PubMed ID: 15979330 [TBL] [Abstract][Full Text] [Related]
18. Comparison of the effects of ionization mechanism, analyte concentration, and ion "cool-times" on the internal energies of peptide ions produced by electrospray and atmospheric pressure matrix-assisted laser desorption ionization. Konn DO; Murrell J; Despeyroux D; Gaskell SJ J Am Soc Mass Spectrom; 2005 May; 16(5):743-51. PubMed ID: 15862775 [TBL] [Abstract][Full Text] [Related]
19. Peptide backbone fragmentation initiated by side-chain loss at cysteine residue in matrix-assisted laser desorption/ionization in-source decay mass spectrometry. Asakawa D; Smargiasso N; Quinton L; De Pauw E J Mass Spectrom; 2013 Mar; 48(3):352-60. PubMed ID: 23494792 [TBL] [Abstract][Full Text] [Related]
20. Specific rearrangement reactions of acetylated lysine containing peptide bn (n = 4-7) ion series. Atik AE; Hernandez O; Maître P; Yalcin T J Mass Spectrom; 2014 Dec; 49(12):1290-7. PubMed ID: 25476947 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]