These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 10884290)

  • 41. A monomeric human apolipoprotein E carboxyl-terminal domain.
    Fan D; Li Q; Korando L; Jerome WG; Wang J
    Biochemistry; 2004 May; 43(17):5055-64. PubMed ID: 15109264
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Replacement of helix 1' enhances the lipid binding activity of apoE3 N-terminal domain.
    Redmond KA; Murphy C; Narayanaswami V; Kiss RS; Hauser P; Guigard E; Kay CM; Ryan RO
    FEBS J; 2006 Feb; 273(3):558-67. PubMed ID: 16420479
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lipid-induced extension of apolipoprotein E helix 4 correlates with low density lipoprotein receptor binding ability.
    Gupta V; Narayanaswami V; Budamagunta MS; Yamamato T; Voss JC; Ryan RO
    J Biol Chem; 2006 Dec; 281(51):39294-9. PubMed ID: 17079229
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structure and binding determinants of the recombinant kringle-2 domain of human plasminogen to an internal peptide from a group A Streptococcal surface protein.
    Rios-Steiner JL; Schenone M; Mochalkin I; Tulinsky A; Castellino FJ
    J Mol Biol; 2001 May; 308(4):705-19. PubMed ID: 11350170
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Folding, calcium binding, and structural characterization of a concatemer of the first and second ligand-binding modules of the low-density lipoprotein receptor.
    Bieri S; Atkins AR; Lee HT; Winzor DJ; Smith R; Kroon PA
    Biochemistry; 1998 Aug; 37(31):10994-1002. PubMed ID: 9692993
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Decoding of lipoprotein-receptor interactions: properties of ligand binding modules governing interactions with apolipoprotein E.
    Guttman M; Prieto JH; Croy JE; Komives EA
    Biochemistry; 2010 Feb; 49(6):1207-16. PubMed ID: 20030366
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The carboxyl terminus in apolipoprotein E2 and the seven amino acid repeat in apolipoprotein E-Leiden: role in receptor-binding activity.
    Dong LM; Innerarity TL; Arnold KS; Newhouse YM; Weisgraber KH
    J Lipid Res; 1998 Jun; 39(6):1173-80. PubMed ID: 9643348
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Functional characterization of apolipoprotein E isoforms overexpressed in Escherichia coli.
    Morrow JA; Arnold KS; Weisgraber KH
    Protein Expr Purif; 1999 Jul; 16(2):224-30. PubMed ID: 10419818
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interaction with amyloid beta peptide compromises the lipid binding function of apolipoprotein E.
    Tamamizu-Kato S; Cohen JK; Drake CB; Kosaraju MG; Drury J; Narayanaswami V
    Biochemistry; 2008 May; 47(18):5225-34. PubMed ID: 18407659
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Binding of an antibody mimetic of the human low density lipoprotein receptor to apolipoprotein E is governed through electrostatic forces. Studies using site-directed mutagenesis and molecular modeling.
    Raffaï R; Weisgraber KH; MacKenzie R; Rupp B; Rassart E; Hirama T; Innerarity TL; Milne R
    J Biol Chem; 2000 Mar; 275(10):7109-16. PubMed ID: 10702278
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dipalmitoylation of a cellular uptake-mediating apolipoprotein E-derived peptide as a promising modification for stable anchorage in liposomal drug carriers.
    Sauer I; Nikolenko H; Keller S; Abu Ajaj K; Bienert M; Dathe M
    Biochim Biophys Acta; 2006 Apr; 1758(4):552-61. PubMed ID: 16681993
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Membrane surface charge modulates lipoprotein complex forming capability of peptides derived from the C-terminal domain of apolipoprotein E.
    Pande AH; Tripathy RK; Nankar SA
    Biochim Biophys Acta; 2009 Jun; 1788(6):1366-76. PubMed ID: 19361484
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Human apolipoprotein E expression in Escherichia coli: structural and functional identity of the bacterially produced protein with plasma apolipoprotein E.
    Vogel T; Weisgraber KH; Zeevi MI; Ben-Artzi H; Levanon AZ; Rall SC; Innerarity TL; Hui DY; Taylor JM; Kanner D
    Proc Natl Acad Sci U S A; 1985 Dec; 82(24):8696-700. PubMed ID: 3909150
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modulation of the lipid binding properties of the N-terminal domain of human apolipoprotein E3.
    Weers PM; Narayanaswami V; Ryan RO
    Eur J Biochem; 2001 Jul; 268(13):3728-35. PubMed ID: 11432739
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Conformation of apolipoprotein E both in free and in lipid-bound form may determine the avidity of triglyceride-rich lipoproteins to the LDL receptor: structural and kinetic study.
    Dergunov AD; Smirnova EA; Merched A; Visvikis S; Siest G; Yakushkin VV; Tsibulsky V
    Biochim Biophys Acta; 2000 Feb; 1484(1):14-28. PubMed ID: 10685027
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ordered opening of LDL receptor binding domain of human apolipoprotein E3 revealed by hydrogen/deuterium exchange mass spectrometry and fluorescence spectroscopy.
    Yang L; Hernandez RV; Tran TN; Nirudodhi S; Beck WHJ; Maier CS; Narayanaswami V
    Biochim Biophys Acta Proteins Proteom; 2018 Nov; 1866(11):1165-1173. PubMed ID: 30282614
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Primary structure comparison of the proposed low density lipoprotein (LDL) receptor binding domain of human and pig apolipoprotein B: implications for LDL-receptor interactions.
    Ebert DL; Maeda N; Lowe SW; Hasler-Rapacz J; Rapacz J; Attie AD
    J Lipid Res; 1988 Nov; 29(11):1501-9. PubMed ID: 3241126
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Human apolipoprotein E4 domain interaction. Arginine 61 and glutamic acid 255 interact to direct the preference for very low density lipoproteins.
    Dong LM; Weisgraber KH
    J Biol Chem; 1996 Aug; 271(32):19053-7. PubMed ID: 8702576
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Human apolipoprotein E7:lysine mutations in the carboxy-terminal domain are directly responsible for preferential binding to very low density lipoproteins.
    Dong J; Balestra ME; Newhouse YM; Weisgraber KH
    J Lipid Res; 2000 Nov; 41(11):1783-9. PubMed ID: 11060347
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Apolipoprotein B and E basic amino acid clusters influence low-density lipoprotein association with lipoprotein lipase anchored to the subendothelial matrix.
    Saxena U; Auerbach BJ; Ferguson E; Wölle J; Marcel YL; Weisgraber KH; Hegele RA; Bisgaier CL
    Arterioscler Thromb Vasc Biol; 1995 Aug; 15(8):1240-7. PubMed ID: 7627718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.