BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 10884346)

  • 1. Substrate binding is a prerequisite for stabilisation of mouse thymidine kinase in proliferating fibroblasts.
    Posch M; Hauser C; Seiser C
    J Mol Biol; 2000 Jul; 300(3):493-502. PubMed ID: 10884346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carboxy-terminal residues of mouse thymidine kinase are essential for rapid degradation in quiescent cells.
    Sutterluety H; Bartl S; Karlseder J; Wintersberger E; Seiser C
    J Mol Biol; 1996 Jun; 259(3):383-92. PubMed ID: 8676376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folding and self-assembly of herpes simplex virus type 1 thymidine kinase.
    Wurth C; Thomas RM; Folkers G; Scapozza L
    J Mol Biol; 2001 Oct; 313(3):657-70. PubMed ID: 11676546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of three essential residues in the conserved ATP-binding region of Epstein-Barr virus thymidine kinase.
    Wu CC; Hsu TY; Chen JY
    Biochemistry; 2005 Mar; 44(12):4785-93. PubMed ID: 15779905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structural determinants responsible for c-Fos protein proteasomal degradation differ according to the conditions of expression.
    Ferrara P; Andermarcher E; Bossis G; Acquaviva C; Brockly F; Jariel-Encontre I; Piechaczyk M
    Oncogene; 2003 Mar; 22(10):1461-74. PubMed ID: 12629509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of destabilized herpes simplex virus type 1 thymidine kinase as transcription reporter for PET reporter systems in molecular genetic imaging.
    Hsieh CH; Chen FD; Wang HE; Hwang JJ; Chang CW; Lee YJ; Gelovani JG; Liu RS
    J Nucl Med; 2008 Jan; 49(1):142-50. PubMed ID: 18077523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural studies of thymidine kinases from Bacillus anthracis and Bacillus cereus provide insights into quaternary structure and conformational changes upon substrate binding.
    Kosinska U; Carnrot C; Sandrini MP; Clausen AR; Wang L; Piskur J; Eriksson S; Eklund H
    FEBS J; 2007 Feb; 274(3):727-37. PubMed ID: 17288553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of thymidine kinase protein stability in serum-stimulated cells.
    Carozza MA; Conrad SE
    Cell Growth Differ; 1994 Aug; 5(8):901-8. PubMed ID: 7986755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular-genetic PET imaging using an HSV1-tk mutant reporter gene with enhanced specificity to acycloguanosine nucleoside analogs.
    Najjar AM; Nishii R; Maxwell DS; Volgin A; Mukhopadhyay U; Bornmann WG; Tong W; Alauddin M; Gelovani JG
    J Nucl Med; 2009 Mar; 50(3):409-16. PubMed ID: 19223410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic incorporation of HSV-1 thymidine kinase into the adenovirus protein IX for functional display on the virion.
    Li J; Le L; Sibley DA; Mathis JM; Curiel DT
    Virology; 2005 Aug; 338(2):247-58. PubMed ID: 15996701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of proteasome alpha-subunit PSMA7 in hepatitis C virus internal ribosome entry site-mediated translation.
    Krüger M; Beger C; Welch PJ; Barber JR; Manns MP; Wong-Staal F
    Mol Cell Biol; 2001 Dec; 21(24):8357-64. PubMed ID: 11713272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of multiple nuclear localization signals in herpes simplex virus type 1 thymidine kinase.
    Degrève B; Esnouf R; De Clercq E; Balzarini J
    Biochem Biophys Res Commun; 1999 Oct; 264(2):338-42. PubMed ID: 10529365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of mutant TKGFP for real-time imaging of temporal dynamics of HIF-1 signal transduction activity mediated by hypoxia and reoxygenation in tumors in living mice.
    Hsieh CH; Kuo JW; Lee YJ; Chang CW; Gelovani JG; Liu RS
    J Nucl Med; 2009 Dec; 50(12):2049-57. PubMed ID: 19910419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate specificity of feline and canine herpesvirus thymidine kinase.
    Solaroli N; Johansson M; Persoons L; Balzarini J; Karlsson A
    Antiviral Res; 2008 Aug; 79(2):128-32. PubMed ID: 18455811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thymidine inhibits the growth-arrest-specific degradation of thymidine kinase protein in transfected L fibroblasts.
    Sutterluety H; Seiser C
    J Mol Biol; 1997 Jan; 265(2):153-60. PubMed ID: 9020979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia-inducible factor 2alpha binds to cobalt in vitro.
    Yuan Y; Beitner-Johnson D; Millhorn DE
    Biochem Biophys Res Commun; 2001 Nov; 288(4):849-54. PubMed ID: 11688986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-Terminal ubiquitination of extracellular signal-regulated kinase 3 and p21 directs their degradation by the proteasome.
    Coulombe P; Rodier G; Bonneil E; Thibault P; Meloche S
    Mol Cell Biol; 2004 Jul; 24(14):6140-50. PubMed ID: 15226418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence- and position-dependent tagging protects extracellular-regulated kinase 3 protein from 26S proteasome-mediated degradation.
    Mikalsen T; Johannessen M; Moens U
    Int J Biochem Cell Biol; 2005 Dec; 37(12):2513-20. PubMed ID: 16084751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-terminal destruction signals lead to rapid degradation of the major histocompatibility complex class II transactivator CIITA.
    Schnappauf F; Hake SB; Camacho Carvajal MM; Bontron S; Lisowska-Grospierre B; Steimle V
    Eur J Immunol; 2003 Aug; 33(8):2337-47. PubMed ID: 12884309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The proteasome activator 11 S REG or PA28: chimeras implicate carboxyl-terminal sequences in oligomerization and proteasome binding but not in the activation of specific proteasome catalytic subunits.
    Li J; Gao X; Joss L; Rechsteiner M
    J Mol Biol; 2000 Jun; 299(3):641-54. PubMed ID: 10835274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.