BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 10884600)

  • 1. Synaptophysin immunoreactivity in spinal white matter of young adult rats.
    Gilmore SA; Sims TJ
    Int J Dev Neurosci; 2000 Oct; 18(6):557-64. PubMed ID: 10884600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural changes of anterior horn neurons and their synaptic input caudal to a low thoracic spinal cord hemisection in the adult rat: a light and electron microscopic study.
    Nacimiento W; Sappok T; Brook GA; Tóth L; Schoen SW; Noth J; Kreutzberg GW
    Acta Neuropathol; 1995; 90(6):552-64. PubMed ID: 8615075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zinc-enriched GABAergic terminals in mouse spinal cord.
    Wang Z; Li JY; Dahlström A; Danscher G
    Brain Res; 2001 Dec; 921(1-2):165-72. PubMed ID: 11720723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. White-matter dendrites in the upper cervical spinal cord of the adult cat: a light and electron microscopic study.
    Rose PK; Richmond FJ
    J Comp Neurol; 1981 Jun; 199(2):191-203. PubMed ID: 7251939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. p75NTR immunoreactivity in the rat dentate gyrus is mostly within presynaptic profiles but is also found in some astrocytic and postsynaptic profiles.
    Dougherty KD; Milner TA
    J Comp Neurol; 1999 Apr; 407(1):77-91. PubMed ID: 10213189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development, neurochemical properties, and axonal projections of a population of last-order premotor interneurons in the white matter of the chick lumbosacral spinal cord.
    Antal M; Puskár Z; Birinyi A; Storm-Mathisen J
    J Exp Zool; 2000 Feb; 286(2):157-72. PubMed ID: 10617858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in immunoreactivity for growth associated protein-43 suggest reorganization of synapses on spinal sympathetic neurons after cord transection.
    Weaver LC; Cassam AK; Krassioukov AV; Llewellyn-Smith IJ
    Neuroscience; 1997 Nov; 81(2):535-51. PubMed ID: 9300440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Morpho-functional characterictic of rat lumbar spinal cord enlargement].
    Gilerovich EG; Moshonkina TR; Fedorova EA; Shishko TT; Pavlova NV; Gerasimenko IuP; Otellin VA
    Morfologiia; 2007; 132(5):33-7. PubMed ID: 18198669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Schwann cell-induced loss of synapses in the central nervous system.
    Sims TJ; Gilmore SA
    Brain Res; 2000 Nov; 882(1-2):221-5. PubMed ID: 11056204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of synaptophysin during the prenatal development of the rat spinal cord: correlation with basic differentiation processes of neurons.
    Bergmann M; Lahr G; Mayerhofer A; Gratzl M
    Neuroscience; 1991; 42(2):569-82. PubMed ID: 1910156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphologically heterogeneous met-enkephalin terminals form synapses with tyrosine hydroxylase-containing dendrites in the rat nucleus locus coeruleus.
    Van Bockstaele EJ; Branchereau P; Pickel VM
    J Comp Neurol; 1995 Dec; 363(3):423-38. PubMed ID: 8847409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colocalization of neurotransmitters in presynaptic boutons of inhibitory synapses in the lamprey spinal cord.
    Veselkin NP; Adanina VO; Rio JP; Repérant J
    Neurosci Behav Physiol; 2000; 30(5):547-52. PubMed ID: 11037146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in synapses and axons demonstrated by synaptophysin immunohistochemistry following spinal cord compression trauma in the rat and mouse.
    Li GL; Farooque M; Isaksson J; Olsson Y
    Biomed Environ Sci; 2004 Sep; 17(3):281-90. PubMed ID: 15602825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light microscopic and ultrastructural analysis of GABA-immunoreactive profiles in the monkey spinal cord.
    Carlton SM; Hayes ES
    J Comp Neurol; 1990 Oct; 300(2):162-82. PubMed ID: 2258461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative light and electron microscopic analysis of taurine-like immunoreactivity in the dorsal horn of the rat spinal cord.
    Lee IS; Renno WM; Beitz AJ
    J Comp Neurol; 1992 Jul; 321(1):65-82. PubMed ID: 1613140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exercise-induced motor improvement after complete spinal cord transection and its relation to expression of brain-derived neurotrophic factor and presynaptic markers.
    Macias M; Nowicka D; Czupryn A; Sulejczak D; Skup M; Skangiel-Kramska J; Czarkowska-Bauch J
    BMC Neurosci; 2009 Dec; 10():144. PubMed ID: 19961582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual ultrastructural immunocytochemical labeling of mu and delta opioid receptors in the superficial layers of the rat cervical spinal cord.
    Cheng PY; Liu-Chen LY; Pickel VM
    Brain Res; 1997 Dec; 778(2):367-80. PubMed ID: 9459554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vanilloid receptor VR1 is both presynaptic and postsynaptic in the superficial laminae of the rat dorsal horn.
    Valtschanoff JG; Rustioni A; Guo A; Hwang SJ
    J Comp Neurol; 2001 Jul; 436(2):225-35. PubMed ID: 11438926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ultrastructural study of cholinergic and non-cholinergic neurons in the laterodorsal and pedunculopontine tegmental nuclei in the rat.
    Honda T; Semba K
    Neuroscience; 1995 Oct; 68(3):837-53. PubMed ID: 8577378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium-binding proteins, parvalbumin- and calbindin-D 28k-immunoreactive neurons in the rat spinal cord and dorsal root ganglia: a light and electron microscopic study.
    Antal M; Freund TF; Polgár E
    J Comp Neurol; 1990 May; 295(3):467-84. PubMed ID: 2351764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.