These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 10885068)

  • 1. Investigation of amine and polyol functionality in extracts of polyurethane wound management dressings using MALDI-MS.
    Ostah N; Lawson G; Zafar S; Harrington G; Hicks J
    Analyst; 2000 Jan; 125(1):111-4. PubMed ID: 10885068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MALDI-MS and colorimetric analysis of diisocyanate and polyol migrants from model polyurethane adhesives used in food packaging.
    Lawson G; Bartram S; Fitchner S; Woodland ED
    Analyst; 2000 Jan; 125(1):115-8. PubMed ID: 10885069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved chemical analysis of cellulose ethers using dialkylamine derivatization and mass spectrometry.
    Momcilovic D; Schagerlöf H; Wittgren B; Wahlund KG; Brinkmalm G
    Biomacromolecules; 2005; 6(5):2793-9. PubMed ID: 16153120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mass Spectrometry of Polyurethanes.
    Crescentini TM; May JC; McLean JA; Hercules DM
    Polymer (Guildf); 2019 Oct; 181():. PubMed ID: 32831406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of High-Performance Biodegradable Rigid Polyurethane Foams Using Full Modified Soy-Based Polyols.
    Fang Z; Qiu C; Ji D; Yang Z; Zhu N; Meng J; Hu X; Guo K
    J Agric Food Chem; 2019 Feb; 67(8):2220-2226. PubMed ID: 30726082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the sensitivity of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry by using polyethylene glycol modified polyurethane MALDI target.
    Peng L; Kinsel GR
    Anal Biochem; 2010 May; 400(1):56-60. PubMed ID: 20074544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of New Eco-Polyols Based on PLA Waste on the Basic Properties of Rigid Polyurethane and Polyurethane/Polyisocyanurate Foams.
    Borowicz M; Isbrandt M; Paciorek-Sadowska J
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of a Mixture of Polyols Based on Metasilicic Acid and Recycled PLA for Synthesis of Rigid Polyurethane Foams Susceptible to Biodegradation.
    Paciorek-Sadowska J; Borowicz M; Chmiel E; Lubczak J
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33374754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and properties of polyurethanes prepared from triglyceride polyols by ozonolysis.
    Petrović ZS; Zhang W; Javni I
    Biomacromolecules; 2005; 6(2):713-9. PubMed ID: 15762634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyamine co-matrices for matrix-assisted laser desorption/ionization mass spectrometry of oligonucleotides.
    Vandell VE; Limbach PA
    Rapid Commun Mass Spectrom; 1999; 13(20):2014-21. PubMed ID: 10510414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New biobased high functionality polyols and their use in polyurethane coatings.
    Pan X; Webster DC
    ChemSusChem; 2012 Feb; 5(2):419-29. PubMed ID: 22271418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of End-Group Functionality of Propylene Oxide-Based Polyether Polyols Recovered from Polyurethane Foams by Chemical Recycling.
    Zdovc B; Grdadolnik M; Pahovnik D; Žagar E
    Macromolecules; 2023 May; 56(9):3374-3382. PubMed ID: 37181246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyalkylation and polyether polyol grafting of graphene tailored for graphene/polyurethane nanocomposites.
    Appel AK; Thomann R; Mülhaupt R
    Macromol Rapid Commun; 2013 Aug; 34(15):1249-55. PubMed ID: 23836705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New Insight on the Study of the Kinetic of Biobased Polyurethanes Synthesis Based on Oleo-Chemistry.
    Peyrton J; Chambaretaud C; Avérous L
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31783536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the degradation of polyurethane foams after artificial and natural ageing by using pyrolysis-gas chromatography/mass spectrometry and headspace-solid phase microextraction-gas chromatography/mass spectrometry.
    Lattuati-Derieux A; Thao-Heu S; Lavédrine B
    J Chromatogr A; 2011 Jul; 1218(28):4498-508. PubMed ID: 21645901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of novel poly(aromatic amine-2,3-pyridinedione) oligomers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Deng H; Zhang Z; Deng Q; Zhao S
    Rapid Commun Mass Spectrom; 2003; 17(19):2233-6. PubMed ID: 14515322
    [No Abstract]   [Full Text] [Related]  

  • 17. Polyols and polyurethanes from the liquefaction of lignocellulosic biomass.
    Hu S; Luo X; Li Y
    ChemSusChem; 2014 Jan; 7(1):66-72. PubMed ID: 24357542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of polyurethane foams using a palm oil-based polyol.
    Tanaka R; Hirose S; Hatakeyama H
    Bioresour Technol; 2008 Jun; 99(9):3810-6. PubMed ID: 17698355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies of peptide binding to allyl amine and vinyl acetic acid-modified polymers using matrix-assisted laser desorption/ionization mass spectrometry.
    Walker AK; Qiu H; Wu Y; Timmons RB; Kinsel GR
    Anal Biochem; 1999 Jul; 271(2):123-30. PubMed ID: 10419626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of rigid polyurethane foams from phosphorylated biopolyols.
    de Haro JC; López-Pedrajas D; Pérez Á; Rodríguez JF; Carmona M
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3174-3183. PubMed ID: 28822032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.