These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 10885271)

  • 1. [Ascorbate free radical reductase activity in vertebrate lenses of some species].
    Matsukura S; Bando M; Obazawa H; Oka M; Takehana M
    Nippon Ganka Gakkai Zasshi; 2000 Jun; 104(6):384-9. PubMed ID: 10885271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ascorbate free radical reductase activity in vertebrate lenses of certain species.
    Matsukura S; Bando M; Obazawa H; Oka M; Takehana M
    Jpn J Ophthalmol; 2001; 45(3):233-9. PubMed ID: 11369371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ascorbate Free Radical Reductase Activity in Vertebrate Lenses of Some Species.
    Matsukura S; Bando M; Obazawa H; Oka M; Takehana M
    Jpn J Ophthalmol; 2000 Nov; 44(6):694. PubMed ID: 11094203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ascorbate free radical reductase and ascorbate redox cycle in the human lens.
    Bando M; Obazawa H
    Jpn J Ophthalmol; 1988; 32(2):176-86. PubMed ID: 3184551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ascorbate free radical reductases and diaphorases in soluble fractions of the human lens.
    Bando M; Obazawa H
    Tokai J Exp Clin Med; 1995 Dec; 20(4-6):215-22. PubMed ID: 8956463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of ascorbate free radical reductase from rabbit lens soluble fraction.
    Bando M; Inoue T; Oka M; Nakamura K; Kawai K; Obazawa H; Kobayashi S; Takehana M
    Exp Eye Res; 2004 Dec; 79(6):869-73. PubMed ID: 15642324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soluble ascorbate free radical reductase in the human lens.
    Bando M; Obazawa H
    Jpn J Ophthalmol; 1994; 38(1):1-9. PubMed ID: 7933690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activities of ascorbate free radical reductase and H2O2-dependent NADH oxidation in senile cataractous human lenses.
    Bando M; Obazawa H
    Exp Eye Res; 1990 Jun; 50(6):779-86. PubMed ID: 2373170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADH-dependent dehydroascorbate reductase in the rabbit lens.
    Akatsuka I; Bando M; Obazawa H; Oka M; Takehana M; Kobayashi S
    Tokai J Exp Clin Med; 2001 Apr; 26(1):25-32. PubMed ID: 11592299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional and subcellular distribution of ascorbate free radical reductase activity in the human lens.
    Bando M; Obazawa H
    Tokai J Exp Clin Med; 1991 Dec; 16(5-6):217-22. PubMed ID: 1820662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of aqueous humor ascorbate on ultraviolet-B-induced DNA damage in lens epithelium.
    Reddy VN; Giblin FJ; Lin LR; Chakrapani B
    Invest Ophthalmol Vis Sci; 1998 Feb; 39(2):344-50. PubMed ID: 9477992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneity of ascorbate free radical reductase in the human lens.
    Bando M; Obazawa H; Takehana M
    Dev Ophthalmol; 2002; 35():143-9. PubMed ID: 12061272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recycling of the ascorbate free radical by human erythrocyte membranes.
    May JM; Qu Z; Cobb CE
    Free Radic Biol Med; 2001 Jul; 31(1):117-24. PubMed ID: 11425497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Levels of reduced pyridine nucleotides and lens photodamage.
    Rao CM; Zigler JS
    Photochem Photobiol; 1992 Oct; 56(4):523-8. PubMed ID: 1454882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NADH-ascorbate free radical and -ferricyanide reductase activities represent different levels of plasma membrane electron transport.
    Villalba JM; Canalejo A; Rodríguez-Aguilera JC; Burón MI; Mooré DJ; Navas P
    J Bioenerg Biomembr; 1993 Aug; 25(4):411-7. PubMed ID: 8226723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADH photo-oxidation is enhanced by a partially purified lambda-crystallin fraction from rabbit lens.
    Bando M; Oka M; Kawai K; Obazawa H; Takehana M
    Mol Vis; 2007 Sep; 13():1722-9. PubMed ID: 17960110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Species differences in zearalenone-reductase activity.
    Ueno Y; Tashiro F; Kobayashi T
    Food Chem Toxicol; 1983 Apr; 21(2):167-73. PubMed ID: 6339334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extremely high levels of NADPH in guinea pig lens: correlation with zeta-crystallin concentration.
    Rao PV; Zigler JS
    Biochem Biophys Res Commun; 1990 Mar; 167(3):1221-8. PubMed ID: 2322267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution and characterization of dihydrodiol dehydrogenases in mammalian ocular tissues.
    Hara A; Nakayama T; Harada T; Kanazu T; Shinoda M; Deyashiki Y; Sawada H
    Biochem J; 1991 Apr; 275 ( Pt 1)(Pt 1):113-9. PubMed ID: 2018467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme/crystallins and extremely high pyridine nucleotide levels in the eye lens.
    Zigler JS; Rao PV
    FASEB J; 1991 Feb; 5(2):223-5. PubMed ID: 2004667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.