BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 10886039)

  • 1. Modification of the Xenopus electroretinogram by actions of glycine in the proximal retina.
    Arnarsson A; Eysteinsson T
    Acta Physiol Scand; 2000 Jul; 169(3):249-58. PubMed ID: 10886039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of GABA in modulating the Xenopus electroretinogram.
    Arnarsson A; Eysteinsson T
    Vis Neurosci; 1997; 14(6):1143-52. PubMed ID: 9447694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of glutamate analogues and inhibitory neurotransmitters on the electroretinograms elicited by random sequence stimuli in rabbits.
    Horiguchi M; Suzuki S; Kondo M; Tanikawa A; Miyake Y
    Invest Ophthalmol Vis Sci; 1998 Oct; 39(11):2171-6. PubMed ID: 9761298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraretinal analysis of the a-wave of the electroretinogram (ERG) in dark-adapted intact cat retina.
    Kang Derwent JJ; Linsenmeier RA
    Vis Neurosci; 2001; 18(3):353-63. PubMed ID: 11497412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinal bipolar cell input mechanisms in giant danio. I. Electroretinographic analysis.
    Wong KY; Adolph AR; Dowling JE
    J Neurophysiol; 2005 Jan; 93(1):84-93. PubMed ID: 15229213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inner-retinal contributions to the photopic sinusoidal flicker electroretinogram of macaques. Macaque photopic sinusoidal flicker ERG.
    Viswanathan S; Frishman LJ; Robson JG
    Doc Ophthalmol; 2002 Sep; 105(2):223-42. PubMed ID: 12462445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antagonists of ionotropic gamma-aminobutyric acid receptors impair the NiCl2-mediated stimulation of the electroretinogram b-wave amplitude from the isolated superfused vertebrate retina.
    Siapich SA; Banat M; Albanna W; Hescheler J; Lüke M; Schneider T
    Acta Ophthalmol; 2009 Nov; 87(8):854-65. PubMed ID: 20002018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primate photopic sine-wave flicker ERG: vector modeling analysis of component origins using glutamate analogs.
    Kondo M; Sieving PA
    Invest Ophthalmol Vis Sci; 2001 Jan; 42(1):305-12. PubMed ID: 11133883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of picrotoxin on light adapted frog electroretinogram are not due entirely to its action in proximal retina.
    Popova E
    Vision Res; 2014 Aug; 101():138-50. PubMed ID: 24999030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinal pathway origins of the pattern ERG of the mouse.
    Miura G; Wang MH; Ivers KM; Frishman LJ
    Exp Eye Res; 2009 Jun; 89(1):49-62. PubMed ID: 19250935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycine binding site of the synaptic NMDA receptor in subpostremal NTS neurons.
    Baptista V; Varanda WA
    J Neurophysiol; 2005 Jul; 94(1):147-52. PubMed ID: 15744010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of neurotransmitters and blockers on electroretinogram c-wave and light peak of the chick].
    Asamizu N
    Nippon Ganka Gakkai Zasshi; 1989 Dec; 93(12):1098-107. PubMed ID: 2576498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycinergic and GABAergic control of intensity-response function of frog ERG waves under different conditions of light stimulation.
    Popova E
    Acta Physiol Scand; 2000 Nov; 170(3):225-42. PubMed ID: 11167308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave.
    Sieving PA; Murayama K; Naarendorp F
    Vis Neurosci; 1994; 11(3):519-32. PubMed ID: 8038126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacology of the skate electroretinogram indicates independent ON and OFF bipolar cell pathways.
    Chappell RL; Rosenstein FJ
    J Gen Physiol; 1996 Apr; 107(4):535-44. PubMed ID: 8722565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photopic ERGs in patients with optic neuropathies: comparison with primate ERGs after pharmacologic blockade of inner retina.
    Rangaswamy NV; Frishman LJ; Dorotheo EU; Schiffman JS; Bahrani HM; Tang RA
    Invest Ophthalmol Vis Sci; 2004 Oct; 45(10):3827-37. PubMed ID: 15452095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Normal photoresponses and altered b-wave responses to APB in the mdx(Cv3) mouse isolated retina ERG supports role for dystrophin in synaptic transmission.
    Green DG; Guo H; Pillers DA
    Vis Neurosci; 2004; 21(5):739-47. PubMed ID: 15683561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Luminance dependence of neural components that underlies the primate photopic electroretinogram.
    Ueno S; Kondo M; Niwa Y; Terasaki H; Miyake Y
    Invest Ophthalmol Vis Sci; 2004 Mar; 45(3):1033-40. PubMed ID: 14985327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional variations in local contributions to the primate photopic flash ERG: revealed using the slow-sequence mfERG.
    Rangaswamy NV; Hood DC; Frishman LJ
    Invest Ophthalmol Vis Sci; 2003 Jul; 44(7):3233-47. PubMed ID: 12824276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primate Retinal Signaling Pathways: Suppressing ON-Pathway Activity in Monkey With Glutamate Analogues Mimics Human CSNB1-NYX Genetic Night Blindness.
    Khan NW; Kondo M; Hiriyanna KT; Jamison JA; Bush RA; Sieving PA
    J Neurophysiol; 2005 Jan; 93(1):481-92. PubMed ID: 15331616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.