These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 10886528)

  • 1. Quantification of boundary segregation in the analytical electron microscope.
    Keast VJ; Williams DB
    J Microsc; 2000 Jul; 199 (Pt 1)():45-55. PubMed ID: 10886528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-sectional measurement of grain boundary segregation using WDS.
    Christien F; Risch P
    Ultramicroscopy; 2016 Nov; 170():107-112. PubMed ID: 27569849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy dispersive spectroscopy analysis of aluminium segregation in silicon carbide grain boundaries.
    Zhang XF; Yang Q; De Jonghe LC; Zhang Z
    J Microsc; 2002 Jul; 207(Pt 1):58-68. PubMed ID: 12135460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concentration depth distribution of grain boundary segregation measured by wavelength dispersive X-ray spectroscopy.
    Yang W; Xu M; Bai H; Meng Y; Wang L; Shi L; Pei Y; Zhang J; Zheng L
    Ultramicroscopy; 2015 Dec; 159 Pt 2():432-7. PubMed ID: 25791794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate quantification of phosphorus intergranular segregation in iron by STEM-EDX.
    Hsu CY; Stodolna J; Todeschini P; Delabrouille F; Radiguet B; Christien F
    Micron; 2022 Feb; 153():103175. PubMed ID: 34826758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a new analytical electron microscopy technique to quantify the chemistry of planar defects and to measure accurately solute segregation to grain boundaries.
    Walther T
    J Microsc; 2004 Aug; 215(Pt 2):191-202. PubMed ID: 15315506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of automated crystallography for transmission electron microscopy in the study of grain-boundary segregation.
    Li C; Williams DB
    Micron; 2003; 34(3-5):199-209. PubMed ID: 12895491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linear least-squares fit evaluation of series of analytical spectra from planar defects: extension and possible implementations in scanning transmission electron microscopy.
    Walther T
    J Microsc; 2006 Aug; 223(Pt 2):165-70. PubMed ID: 16911077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron beam broadening in electron-transparent samples at low electron energies.
    Hugenschmidt M; Müller E; Gerthsen D
    J Microsc; 2019 Jun; 274(3):150-157. PubMed ID: 31001840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy Dispersive X-ray Tomography for 3D Elemental Mapping of Individual Nanoparticles.
    Slater TJ; Lewis EA; Haigh SJ
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27403838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Characterization by Transmission Electron Microscopy and Its Application to Interfacial Phenomena in Crystalline Materials.
    Ii S
    Materials (Basel); 2024 Jan; 17(3):. PubMed ID: 38591374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel approach for site-specific atom probe specimen preparation by focused ion beam and transmission electron backscatter diffraction.
    Babinsky K; De Kloe R; Clemens H; Primig S
    Ultramicroscopy; 2014 Sep; 144():9-18. PubMed ID: 24815026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution scanning electron microscopy.
    Joy DC; Pawley JB
    Ultramicroscopy; 1992 Nov; 47(1-3):80-100. PubMed ID: 1481281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic-scale quantification of grain boundary segregation in nanocrystalline material.
    Herbig M; Raabe D; Li YJ; Choi P; Zaefferer S; Goto S
    Phys Rev Lett; 2014 Mar; 112(12):126103. PubMed ID: 24724663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Focused ion beam preparation of atom probe specimens containing a single crystallographically well-defined grain boundary.
    Pérez-Willard F; Wolde-Giorgis D; Al-Kassab T; López GA; Mittemeijer EJ; Kirchheim R; Gerthsen D
    Micron; 2008; 39(1):45-52. PubMed ID: 17331735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-scale characterization by FIB-SEM/TEM/3DAP.
    Ohkubo T; Sepehri-Amin H; Sasaki TT; Hono K
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i6-i7. PubMed ID: 25359845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of large solid angles of collection on quantitative X-ray microanalysis in the AEM.
    Watanabe M; Ackland DW; Williams DB
    J Microsc; 1999 Jul; 195(Pt 1):34-43. PubMed ID: 10444300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-magnification Quantitative X-ray Mapping of Grain-boundary Segregation in Aluminum-4 wt.% Copper by Analytical Electron Microscopy.
    Carpenter DT; Watanabe M; Barmak K; Williams DB
    Microsc Microanal; 1999 Jul; 5(4):254-266. PubMed ID: 10421810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of [110] tilt grain boundaries in zirconia bicrystals.
    Shibata N; Yamamoto T; Ikuhara Y; Sakuma T
    J Electron Microsc (Tokyo); 2001; 50(6):429-33. PubMed ID: 11918406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implementing Transmission Electron Backscatter Diffraction for Atom Probe Tomography.
    Rice KP; Chen Y; Prosa TJ; Larson DJ
    Microsc Microanal; 2016 Jun; 22(3):583-8. PubMed ID: 27329309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.