These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 10886528)
21. Atomically ordered solute segregation behaviour in an oxide grain boundary. Feng B; Yokoi T; Kumamoto A; Yoshiya M; Ikuhara Y; Shibata N Nat Commun; 2016 Mar; 7():11079. PubMed ID: 27004614 [TBL] [Abstract][Full Text] [Related]
22. Nanoscopic analysis of oxygen segregation at tilt boundaries in silicon ingots using atom probe tomography combined with TEM and ab initio calculations. Ohno Y; Inoue K; Fujiwara K; Kutsukake K; Deura M; Yonenaga I; Ebisawa N; Shimizu Y; Inoue K; Nagai Y; Yoshida H; Takeda S; Tanaka S; Kohyama M J Microsc; 2017 Dec; 268(3):230-238. PubMed ID: 28686305 [TBL] [Abstract][Full Text] [Related]
23. Quantitative Electron-Excited X-Ray Microanalysis of Borides, Carbides, Nitrides, Oxides, and Fluorides with Scanning Electron Microscopy/Silicon Drift Detector Energy-Dispersive Spectrometry (SEM/SDD-EDS) and NIST DTSA-II. Newbury DE; Ritchie NW Microsc Microanal; 2015 Oct; 21(5):1327-40. PubMed ID: 26365439 [TBL] [Abstract][Full Text] [Related]
24. Biological electron energy loss spectroscopy in the field-emission scanning transmission electron microscope. Leapman RD; Sun SQ; Hunt JA; Andrews SB Scanning Microsc Suppl; 1994; 8():245-58; discussion 258-9. PubMed ID: 7638490 [TBL] [Abstract][Full Text] [Related]
25. On the quantitativeness of grain boundary chemistry using STEM EDS: A ZrO Feng B; Lugg NR; Kumamoto A; Shibata N; Ikuhara Y Ultramicroscopy; 2018 Oct; 193():33-38. PubMed ID: 29909189 [TBL] [Abstract][Full Text] [Related]
26. Correlating Atom Probe Tomography with Atomic-Resolved Scanning Transmission Electron Microscopy: Example of Segregation at Silicon Grain Boundaries. Stoffers A; Barthel J; Liebscher CH; Gault B; Cojocaru-Mirédin O; Scheu C; Raabe D Microsc Microanal; 2017 Apr; 23(2):291-299. PubMed ID: 28215198 [TBL] [Abstract][Full Text] [Related]
27. X-Ray Absorption Correction for Quantitative Scanning Transmission Electron Microscopic Energy-Dispersive X-Ray Spectroscopy of Spherical Nanoparticles. Slater T; Chen Y; Auton G; Zaluzec N; Haigh S Microsc Microanal; 2016 Apr; 22(2):440-7. PubMed ID: 27050041 [TBL] [Abstract][Full Text] [Related]
28. Barriers to Quantitative Electron Probe X-Ray Microanalysis for Low Voltage Scanning Electron Microscopy. Newbury DE J Res Natl Inst Stand Technol; 2002; 107(6):605-19. PubMed ID: 27446755 [TBL] [Abstract][Full Text] [Related]
29. Loss of grain boundary segregant during ion milling. Kenik EA J Electron Microsc Tech; 1991 Jun; 18(2):167-71. PubMed ID: 1885999 [TBL] [Abstract][Full Text] [Related]
30. Grain boundary study of technically pure molybdenum by combining APT and TKD. Babinsky K; Knabl W; Lorich A; De Kloe R; Clemens H; Primig S Ultramicroscopy; 2015 Dec; 159 Pt 2():445-51. PubMed ID: 26025208 [TBL] [Abstract][Full Text] [Related]
31. Theoretical and Experimental X-Ray Peak/Background Ratios and Implications for Energy-Dispersive Spectrometry in the Next-Generation Analytical Electron Microscope. Zaluzec NJ Microsc Microanal; 2016 Feb; 22(1):230-6. PubMed ID: 26794345 [TBL] [Abstract][Full Text] [Related]
32. Detection, distribution, and quantification of carbon in steel microstructures by PEELS. Menon ES; Fox AG Microsc Microanal; 2002 Oct; 8(5):392-402. PubMed ID: 12533215 [TBL] [Abstract][Full Text] [Related]
33. Extending ζ-factor microanalysis to boron-rich ceramics: Quantification of bulk stoichiometry and grain boundary composition. Marvel CJ; Behler KD; LaSalvia JC; Domnich V; Haber RA; Watanabe M; Harmer MP Ultramicroscopy; 2019 Jul; 202():163-172. PubMed ID: 31078950 [TBL] [Abstract][Full Text] [Related]
34. New pathways for improved quantification of energy-dispersive X-ray spectra of semiconductors with multiple X-ray lines from thin foils investigated in transmission electron microscopy. Parri MC; Qiu Y; Walther T J Microsc; 2015 Dec; 260(3):427-41. PubMed ID: 26769195 [TBL] [Abstract][Full Text] [Related]
35. Self-consistent method for quantifying indium content from X-ray spectra of thick compound semiconductor specimens in a transmission electron microscope. Walther T; Wang X J Microsc; 2016 May; 262(2):151-6. PubMed ID: 26258768 [TBL] [Abstract][Full Text] [Related]
37. Win X-ray: a new Monte Carlo program that computes X-ray spectra obtained with a scanning electron microscope. Gauvin R; Lifshin E; Demers H; Horny P; Campbell H Microsc Microanal; 2006 Feb; 12(1):49-64. PubMed ID: 17481341 [TBL] [Abstract][Full Text] [Related]
38. Artifacts in energy dispersive x-ray spectrometry in the scanning electron microscope (II). Fiori CE; Newbury DE Scan Electron Microsc; 1980; (Pt 2):251-8, 250. PubMed ID: 7423119 [TBL] [Abstract][Full Text] [Related]
39. Spatial resolution and energy filtering of backscattered electron images in scanning electron microscopy. Merli PG; Migliori A; Morandi V; Rosa R Ultramicroscopy; 2001 Jul; 88(2):139-50. PubMed ID: 11419875 [TBL] [Abstract][Full Text] [Related]