These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 10886716)

  • 1. The immunomodulatory factors of bloodfeeding arthropod saliva.
    Gillespie RD; Mbow ML; Titus RG
    Parasite Immunol; 2000 Jul; 22(7):319-31. PubMed ID: 10886716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The immunomodulatory factors of arthropod saliva and the potential for these factors to serve as vaccine targets to prevent pathogen transmission.
    Titus RG; Bishop JV; Mejia JS
    Parasite Immunol; 2006 Apr; 28(4):131-41. PubMed ID: 16542315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is it possible to develop pan-arthropod vaccines?
    Mejia JS; Bishop JV; Titus RG
    Trends Parasitol; 2006 Aug; 22(8):367-70. PubMed ID: 16784890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunological consequences of arthropod vector-derived salivary factors.
    Leitner WW; Costero-Saint Denis A; Wali T
    Eur J Immunol; 2011 Dec; 41(12):3396-400. PubMed ID: 22125007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of host immunity by haematophagous arthropods.
    Schoeler GB; Wikel SK
    Ann Trop Med Parasitol; 2001 Dec; 95(8):755-71. PubMed ID: 11784430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sandfly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. major infection.
    Morris RV; Shoemaker CB; David JR; Lanzaro GC; Titus RG
    J Immunol; 2001 Nov; 167(9):5226-30. PubMed ID: 11673536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epidemiological consequences of immune sensitisation by pre-exposure to vector saliva.
    Kamiya T; Greischar MA; Mideo N
    PLoS Negl Trop Dis; 2017 Oct; 11(10):e0005956. PubMed ID: 28991904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular crosstalks in Leishmania-sandfly-host relationships.
    Volf P; Hostomska J; Rohousova I
    Parasite; 2008 Sep; 15(3):237-43. PubMed ID: 18814687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tick Saliva and Salivary Glands: What Do We Know So Far on Their Role in Arthropod Blood Feeding and Pathogen Transmission.
    Neelakanta G; Sultana H
    Front Cell Infect Microbiol; 2021; 11():816547. PubMed ID: 35127563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Displaced tick-parasite interactions at the host interface.
    Nuttall PA
    Parasitology; 1998; 116 Suppl():S65-72. PubMed ID: 9695111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Counterattacking the tick bite: towards a rational design of anti-tick vaccines targeting pathogen transmission.
    Rego ROM; Trentelman JJA; Anguita J; Nijhof AM; Sprong H; Klempa B; Hajdusek O; Tomás-Cortázar J; Azagi T; Strnad M; Knorr S; Sima R; Jalovecka M; Fumačová Havlíková S; Ličková M; Sláviková M; Kopacek P; Grubhoffer L; Hovius JW
    Parasit Vectors; 2019 May; 12(1):229. PubMed ID: 31088506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implication of haematophagous arthropod salivary proteins in host-vector interactions.
    Fontaine A; Diouf I; Bakkali N; Missé D; Pagès F; Fusai T; Rogier C; Almeras L
    Parasit Vectors; 2011 Sep; 4():187. PubMed ID: 21951834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress toward molecular characterization of ectoparasite modulation of host immunity.
    Wikel SK; Alarcon-Chaidez FJ
    Vet Parasitol; 2001 Nov; 101(3-4):275-87. PubMed ID: 11707302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sand fly saliva: effects on host immune response and Leishmania transmission.
    Rohousová I; Volf P
    Folia Parasitol (Praha); 2006 Sep; 53(3):161-71. PubMed ID: 17120496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The bloodsucking arthropod bite as possible cofactor in the transmission of human herpesvirus-8 infection and in the expression of Kaposi's sarcoma disease.
    Coluzzi M; Manno D; Guzzinati S; Tognazzo S; Zambon P; Arcà B; Costantini C; Ascoli V
    Parassitologia; 2002 Jun; 44(1-2):123-9. PubMed ID: 12404820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arthropod-borne pathogens of dogs and cats: From pathways and times of transmission to disease control.
    Otranto D
    Vet Parasitol; 2018 Feb; 251():68-77. PubMed ID: 29426479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vaccines against arthropods.
    Kay BH; Kemp DH
    Am J Trop Med Hyg; 1994; 50(6 Suppl):87-96. PubMed ID: 8024089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of immune cell subsets in the establishment of vector-borne infections.
    Leitner WW; Costero-Saint Denis A; Wali T
    Eur J Immunol; 2012 Dec; 42(12):3110-5. PubMed ID: 23255007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the Salivary Gland Transcriptome of Unfed and Partially Fed
    Esteves E; Maruyama SR; Kawahara R; Fujita A; Martins LA; Righi AA; Costa FB; Palmisano G; Labruna MB; Sá-Nunes A; Ribeiro JMC; Fogaça AC
    Front Cell Infect Microbiol; 2017; 7():476. PubMed ID: 29209593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skin and arthropods: an effective interaction used by pathogens in vector-borne diseases.
    Bernard Q; Jaulhac B; Boulanger N
    Eur J Dermatol; 2015 Apr; 25 Suppl 1():18-22. PubMed ID: 26083670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.