BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 10887188)

  • 1. Functional characterization of a mammalian Sac1 and mutants exhibiting substrate-specific defects in phosphoinositide phosphatase activity.
    Nemoto Y; Kearns BG; Wenk MR; Chen H; Mori K; Alb JG; De Camilli P; Bankaitis VA
    J Biol Chem; 2000 Nov; 275(44):34293-305. PubMed ID: 10887188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SAC1 encodes a regulated lipid phosphoinositide phosphatase, defects in which can be suppressed by the homologous Inp52p and Inp53p phosphatases.
    Hughes WE; Woscholski R; Cooke FT; Patrick RS; Dove SK; McDonald NQ; Parker PJ
    J Biol Chem; 2000 Jan; 275(2):801-8. PubMed ID: 10625610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SAC1p is an integral membrane protein that influences the cellular requirement for phospholipid transfer protein function and inositol in yeast.
    Whitters EA; Cleves AE; McGee TP; Skinner HB; Bankaitis VA
    J Cell Biol; 1993 Jul; 122(1):79-94. PubMed ID: 8314848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sac1 lipid phosphatase and Stt4 phosphatidylinositol 4-kinase regulate a pool of phosphatidylinositol 4-phosphate that functions in the control of the actin cytoskeleton and vacuole morphology.
    Foti M; Audhya A; Emr SD
    Mol Biol Cell; 2001 Aug; 12(8):2396-411. PubMed ID: 11514624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SAC1-like domains of yeast SAC1, INP52, and INP53 and of human synaptojanin encode polyphosphoinositide phosphatases.
    Guo S; Stolz LE; Lemrow SM; York JD
    J Biol Chem; 1999 May; 274(19):12990-5. PubMed ID: 10224048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The phosphoinositide phosphatase Sac1p controls trafficking of the yeast Chs3p chitin synthase.
    Schorr M; Then A; Tahirovic S; Hug N; Mayinger P
    Curr Biol; 2001 Sep; 11(18):1421-6. PubMed ID: 11566100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The human phosphatidylinositol phosphatase SAC1 interacts with the coatomer I complex.
    Rohde HM; Cheong FY; Konrad G; Paiha K; Mayinger P; Boehmelt G
    J Biol Chem; 2003 Dec; 278(52):52689-99. PubMed ID: 14527956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three SAC1-like genes show overlapping patterns of expression in Arabidopsis but are remarkably silent during embryo development.
    Despres B; Bouissonnié F; Wu HJ; Gomord V; Guilleminot J; Grellet F; Berger F; Delseny M; Devic M
    Plant J; 2003 May; 34(3):293-306. PubMed ID: 12713536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retention of the yeast Sac1p phosphatase in the endoplasmic reticulum causes distinct changes in cellular phosphoinositide levels and stimulates microsomal ATP transport.
    Konrad G; Schlecker T; Faulhammer F; Mayinger P
    J Biol Chem; 2002 Mar; 277(12):10547-54. PubMed ID: 11792713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased Phospholipid Flux Bypasses Overlapping Essential Requirements for the Yeast Sac1p Phosphoinositide Phosphatase and ER-PM Membrane Contact Sites.
    Nenadic A; Zaman MF; Johansen J; Volpiana MW; Beh CT
    J Biol Chem; 2023 Sep; 299(9):105092. PubMed ID: 37507017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Sac1 phosphoinositide phosphatase regulates Golgi membrane morphology and mitotic spindle organization in mammals.
    Liu Y; Boukhelifa M; Tribble E; Morin-Kensicki E; Uetrecht A; Bear JE; Bankaitis VA
    Mol Biol Cell; 2008 Jul; 19(7):3080-96. PubMed ID: 18480408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sac1p plays a crucial role in microsomal ATP transport, which is distinct from its function in Golgi phospholipid metabolism.
    Kochendörfer KU; Then AR; Kearns BG; Bankaitis VA; Mayinger P
    EMBO J; 1999 Mar; 18(6):1506-15. PubMed ID: 10075922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Essential roles of phosphatidylinositol 4-phosphate phosphatases Sac1p and Sjl3p in yeast autophagosome formation.
    Muramoto M; Yamakuchi Y; Konishi R; Koudatsu S; Tomikura H; Fukuda K; Kuriyama S; Kurokawa Y; Masatani T; Tamaki H; Fujita A
    Biochim Biophys Acta Mol Cell Biol Lipids; 2022 Sep; 1867(9):159184. PubMed ID: 35640825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of intracellular phosphatidylinositol-4-phosphate by the Sac1 lipid phosphatase.
    Tahirovic S; Schorr M; Mayinger P
    Traffic; 2005 Feb; 6(2):116-30. PubMed ID: 15634212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth control of Golgi phosphoinositides by reciprocal localization of sac1 lipid phosphatase and pik1 4-kinase.
    Faulhammer F; Kanjilal-Kolar S; Knödler A; Lo J; Lee Y; Konrad G; Mayinger P
    Traffic; 2007 Nov; 8(11):1554-67. PubMed ID: 17908202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell growth-dependent coordination of lipid signaling and glycosylation is mediated by interactions between Sac1p and Dpm1p.
    Faulhammer F; Konrad G; Brankatschk B; Tahirovic S; Knödler A; Mayinger P
    J Cell Biol; 2005 Jan; 168(2):185-91. PubMed ID: 15657391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sac1-Vps74 structure reveals a mechanism to terminate phosphoinositide signaling in the Golgi apparatus.
    Cai Y; Deng Y; Horenkamp F; Reinisch KM; Burd CG
    J Cell Biol; 2014 Aug; 206(4):485-91. PubMed ID: 25113029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sac1p mediates the adenosine triphosphate transport into yeast endoplasmic reticulum that is required for protein translocation.
    Mayinger P; Bankaitis VA; Meyer DI
    J Cell Biol; 1995 Dec; 131(6 Pt 1):1377-86. PubMed ID: 8522598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osh proteins regulate phosphoinositide metabolism at ER-plasma membrane contact sites.
    Stefan CJ; Manford AG; Baird D; Yamada-Hanff J; Mao Y; Emr SD
    Cell; 2011 Feb; 144(3):389-401. PubMed ID: 21295699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation of PtdIns(4)P at the Golgi mediated by reversible oxidation of the PtdIns(4)P phosphatase Sac1 by H
    Lim JM; Park S; Lee MS; Balla T; Kang D; Rhee SG
    Free Radic Biol Med; 2019 Jan; 130():426-435. PubMed ID: 30448513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.