These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 10888446)

  • 1. Electronic excitation as a mechanism of the ion selectivity filter.
    Khvostenko OG; Shishlov NM; Fokin AI; Shvedov VI; Fedotova OA
    Spectrochim Acta A Mol Biomol Spectrosc; 2000 Jun; 56A(7):1423-32. PubMed ID: 10888446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ab initio molecular orbital study of the interaction of Li+, Na+ and K+ with the pore components of ion channels: consideration of the size, structure and selectivity of the pore of the channels.
    Nagata C; Aida M
    J Theor Biol; 1984 Oct; 110(4):569-85. PubMed ID: 6097772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitation energy transport with noise and disorder in a model of the selectivity filter of an ion channel.
    Jalalinejad A; Bassereh H; Salari V; Ala-Nissila T; Giacometti A
    J Phys Condens Matter; 2018 Oct; 30(41):415101. PubMed ID: 30178755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unified modeling of conductance kinetics for low- and high-conductance potassium ion channels.
    Tolokh IS; Goldman S; Gray CG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011902. PubMed ID: 16907122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A refined atomic scale model of the Saccharomyces cerevisiae K+-translocation protein Trk1p combined with experimental evidence confirms the role of selectivity filter glycines and other key residues.
    Zayats V; Stockner T; Pandey SK; Wörz K; Ettrich R; Ludwig J
    Biochim Biophys Acta; 2015 May; 1848(5):1183-95. PubMed ID: 25687974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noise assisted excitation energy transfer in a linear model of a selectivity filter backbone strand.
    Bassereh H; Salari V; Shahbazi F
    J Phys Condens Matter; 2015 Jul; 27(27):275102. PubMed ID: 26061758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microscopic model for selective permeation in ion channels.
    Wu J
    Biophys J; 1991 Jul; 60(1):238-51. PubMed ID: 1715765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different roles for aspartates and glutamates for cation permeation in bacterial sodium channels.
    Guardiani C; Fedorenko OA; Khovanov IA; Roberts SK
    Biochim Biophys Acta Biomembr; 2019 Feb; 1861(2):495-503. PubMed ID: 30529079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quantum-mechanical description of ion motion within the confining potentials of voltage-gated ion channels.
    Summhammer J; Salari V; Bernroider G
    J Integr Neurosci; 2012 Jun; 11(2):123-35. PubMed ID: 22744820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions of the membrane dipole potential to the function of voltage-gated cation channels and modulation by small molecule potentiators.
    Pearlstein RA; Dickson CJ; Hornak V
    Biochim Biophys Acta Biomembr; 2017 Feb; 1859(2):177-194. PubMed ID: 27836643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Permeation in potassium channels: implications for channel structure.
    Yellen G
    Annu Rev Biophys Biophys Chem; 1987; 16():227-46. PubMed ID: 2439096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond the molecular orbital conception of electronically excited states through the quantum theory of atoms in molecules.
    Ferro-Costas D; Pendás AM; González L; Mosquera RA
    Phys Chem Chem Phys; 2014 May; 16(20):9249-58. PubMed ID: 24709865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plants do it differently. A new basis for potassium/sodium selectivity in the pore of an ion channel.
    Hua BG; Mercier RW; Leng Q; Berkowitz GA
    Plant Physiol; 2003 Jul; 132(3):1353-61. PubMed ID: 12857817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand-gated ion channels: mechanisms underlying ion selectivity.
    Keramidas A; Moorhouse AJ; Schofield PR; Barry PH
    Prog Biophys Mol Biol; 2004 Oct; 86(2):161-204. PubMed ID: 15288758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Channels produced by spider venoms in bilayer lipid membrane: mechanisms of ion transport and toxic action.
    Mironov SL; Sokolov YuV ; Chanturiya AN; Lishko VK
    Biochim Biophys Acta; 1986 Nov; 862(1):185-98. PubMed ID: 2429700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic analysis of Ca2+/K+ selectivity of an ion channel by single-binding-site models.
    Gradmann D; Johannes E; Hansen U
    J Membr Biol; 1997 Sep; 159(2):169-78. PubMed ID: 9307443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion selectivity of epithelial Na channels.
    Palmer LG
    J Membr Biol; 1987; 96(2):97-106. PubMed ID: 2439691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-range and long-range solvent effects on charge-transfer-to-solvent transitions of I- and K+I- contact ion pair dissolved in supercritical ammonia.
    Sciaini G; Fernández-Prini R; Estrin DA; Marceca E
    J Chem Phys; 2007 May; 126(17):174504. PubMed ID: 17492871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opening of the human epithelial calcium channel TRPV6.
    McGoldrick LL; Singh AK; Saotome K; Yelshanskaya MV; Twomey EC; Grassucci RA; Sobolevsky AI
    Nature; 2018 Jan; 553(7687):233-237. PubMed ID: 29258289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structural basis of ClC chloride channel function.
    Dutzler R
    Trends Neurosci; 2004 Jun; 27(6):315-20. PubMed ID: 15165735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.