BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 10888511)

  • 1. Effect of storage temperature and pyruvate on kinetics of anthocyanin degradation, vitisin A derivative formation, and color characteristics of model solutions.
    Romero C; Bakker J
    J Agric Food Chem; 2000 Jun; 48(6):2135-41. PubMed ID: 10888511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between grape anthocyanins and pyruvic acid, with effect of pH and acid concentration on anthocyanin composition and color in model solutions.
    Romero C; Bakker J
    J Agric Food Chem; 1999 Aug; 47(8):3130-9. PubMed ID: 10552620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution and stability of anthocyanin-derived pigments during Port wine aging.
    Mateus N; de Freitas V
    J Agric Food Chem; 2001 Nov; 49(11):5217-22. PubMed ID: 11714306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction between hydroxycinnamic acids and anthocyanin-pyruvic acid adducts yielding new portisins.
    Oliveira J; de Freitas V; Silva AM; Mateus N
    J Agric Food Chem; 2007 Jul; 55(15):6349-56. PubMed ID: 17602659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vitisin A content in Chilean wines from Vitis vinifera Cv. Cabernet Sauvignon and contribution to the color of aged red wines.
    Schwarz M; Quast P; von Baer D; Winterhalter P
    J Agric Food Chem; 2003 Oct; 51(21):6261-7. PubMed ID: 14518953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Oak Ellagitannins in the Synthesis of Vitisin A and in the Degradation of Malvidin 3-
    Alcalde-Eon C; Escribano-Bailón MT; García-Estévez I
    J Agric Food Chem; 2022 Oct; 70(41):13049-13061. PubMed ID: 35438989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyruvic acid and acetaldehyde production by different strains of Saccharomyces cerevisiae: relationship with Vitisin A and B formation in red wines.
    Morata A; Gómez-Cordovés MC; Colomo B; Suárez JA
    J Agric Food Chem; 2003 Dec; 51(25):7402-9. PubMed ID: 14640591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparative isolation of anthocyanins by high-speed countercurrent chromatography and application of the color activity concept to red wine.
    Degenhardt A; Hofmann S; Knapp H; Winterhalter P
    J Agric Food Chem; 2000 Dec; 48(12):5812-8. PubMed ID: 11312759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of vitisins and anthocyanin-flavanol adducts during red grape drying.
    Marquez A; Dueñas M; Serratosa MP; Merida J
    J Agric Food Chem; 2012 Jul; 60(27):6866-74. PubMed ID: 22703561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anthocyanins from red wine--their stability under simulated gastrointestinal digestion.
    McDougall GJ; Fyffe S; Dobson P; Stewart D
    Phytochemistry; 2005 Nov; 66(21):2540-8. PubMed ID: 16242736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence approach for measuring anthocyanins and derived pigments in red wine.
    Agati G; Matteini P; Oliveira J; de Freitas V; Mateus N
    J Agric Food Chem; 2013 Oct; 61(42):10156-62. PubMed ID: 24063641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A New Chemical Pathway Yielding A-Type Vitisins in Red Wines.
    Araújo P; Fernandes A; de Freitas V; Oliveira J
    Int J Mol Sci; 2017 Apr; 18(4):. PubMed ID: 28375190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yeast influence on the formation of stable pigments in red winemaking.
    Morata A; Loira I; Heras JM; Callejo MJ; Tesfaye W; González C; Suárez-Lepe JA
    Food Chem; 2016 Apr; 197(Pt A):686-91. PubMed ID: 26617004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction kinetics of the acetaldehyde-mediated condensation between (-)-epicatechin and anthocyanins and their effects on the color in model wine solutions.
    Liu Y; Zhang XK; Shi Y; Duan CQ; He F
    Food Chem; 2019 Jun; 283():315-323. PubMed ID: 30722877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brazilian red wines made from the hybrid grape cultivar Isabel: phenolic composition and antioxidant capacity.
    Nixdorf SL; Hermosín-Gutiérrez I
    Anal Chim Acta; 2010 Feb; 659(1-2):208-15. PubMed ID: 20103126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of different phenolic copigments on the color of malvidin 3-glucoside.
    Gómez-Míguez M; González-Manzano S; Escribano-Bailón MT; Heredia FJ; Santos-Buelga C
    J Agric Food Chem; 2006 Jul; 54(15):5422-9. PubMed ID: 16848527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility study of FT-MIR spectroscopy and PLS-R for the fast determination of anthocyanins in wine.
    Romera-Fernández M; Berrueta LA; Garmón-Lobato S; Gallo B; Vicente F; Moreda JM
    Talanta; 2012 Jan; 88():303-10. PubMed ID: 22265503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemisynthesis and structural characterization of flavanol-(4,8)-vitisins by mass spectrometry.
    Nave F; Teixeira N; Mateus N; de Freitas V
    Rapid Commun Mass Spectrom; 2010 Jul; 24(14):1964-70. PubMed ID: 20552703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selectivity of pigments extraction from grapes and their partial retention in the pomace during red-winemaking.
    Favre G; Hermosín-Gutiérrez I; Piccardo D; Gómez-Alonso S; González-Neves G
    Food Chem; 2019 Mar; 277():391-397. PubMed ID: 30502162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anthocyanin transformation in Cabernet Sauvignon wine during aging.
    Wang H; Race EJ; Shrikhande AJ
    J Agric Food Chem; 2003 Dec; 51(27):7989-94. PubMed ID: 14690384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.