BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

961 related articles for article (PubMed ID: 10888672)

  • 1. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress.
    Raitt DC; Johnson AL; Erkine AM; Makino K; Morgan B; Gross DS; Johnston LH
    Mol Biol Cell; 2000 Jul; 11(7):2335-47. PubMed ID: 10888672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Saccharomyces cerevisiae heat shock transcription factor regulates cell wall remodeling in response to heat shock.
    Imazu H; Sakurai H
    Eukaryot Cell; 2005 Jun; 4(6):1050-6. PubMed ID: 15947197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of the Hsf1-dependent transcriptome via conserved bipartite contacts with Hsp70 promotes survival in yeast.
    Peffer S; Gonçalves D; Morano KA
    J Biol Chem; 2019 Aug; 294(32):12191-12202. PubMed ID: 31239354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel domain of the yeast heat shock factor that regulates its activation function.
    Sakurai H; Fukasawa T
    Biochem Biophys Res Commun; 2001 Jul; 285(3):696-701. PubMed ID: 11453649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae.
    Morgan BA; Banks GR; Toone WM; Raitt D; Kuge S; Johnston LH
    EMBO J; 1997 Mar; 16(5):1035-44. PubMed ID: 9118942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex regulation of Hsf1-Skn7 activities by the catalytic subunits of PKA in Saccharomyces cerevisiae: experimental and computational evidences.
    Pérez-Landero S; Sandoval-Motta S; Martínez-Anaya C; Yang R; Folch-Mallol JL; Martínez LM; Ventura L; Guillén-Navarro K; Aldana-González M; Nieto-Sotelo J
    BMC Syst Biol; 2015 Jul; 9():42. PubMed ID: 26209979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of the YAP1 and YAP2 genes in the regulation of the adaptive oxidative stress responses of Saccharomyces cerevisiae.
    Stephen DW; Rivers SL; Jamieson DJ
    Mol Microbiol; 1995 May; 16(3):415-23. PubMed ID: 7565103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress induction of HSP30, the plasma membrane heat shock protein gene of Saccharomyces cerevisiae, appears not to use known stress-regulated transcription factors.
    Seymour IJ; Piper PW
    Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():231-239. PubMed ID: 10206703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic and epigenetic determinants establish a continuum of Hsf1 occupancy and activity across the yeast genome.
    Pincus D; Anandhakumar J; Thiru P; Guertin MJ; Erkine AM; Gross DS
    Mol Biol Cell; 2018 Dec; 29(26):3168-3182. PubMed ID: 30332327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae.
    Yamamoto A; Mizukami Y; Sakurai H
    J Biol Chem; 2005 Mar; 280(12):11911-9. PubMed ID: 15647283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of human heat shock factor trimerization by the linker domain.
    Liu PC; Thiele DJ
    J Biol Chem; 1999 Jun; 274(24):17219-25. PubMed ID: 10358080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The yeast Hsp70 Ssa1 is a sensor for activation of the heat shock response by thiol-reactive compounds.
    Wang Y; Gibney PA; West JD; Morano KA
    Mol Biol Cell; 2012 Sep; 23(17):3290-8. PubMed ID: 22809627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defining the Essential Function of Yeast Hsf1 Reveals a Compact Transcriptional Program for Maintaining Eukaryotic Proteostasis.
    Solís EJ; Pandey JP; Zheng X; Jin DX; Gupta PB; Airoldi EM; Pincus D; Denic V
    Mol Cell; 2016 Jul; 63(1):60-71. PubMed ID: 27320198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carboxy-terminal region of the yeast heat shock factor contains two domains that make transcription independent of the TFIIH protein kinase.
    Sakurai H; Hashikawa N; Imazu H; Fukasawa T
    Genes Cells; 2003 Dec; 8(12):951-61. PubMed ID: 14750950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of heat shock transcription factor in yeast is not influenced by the levels of expression of heat shock proteins.
    Hjorth-Sørensen B; Hoffmann ER; Lissin NM; Sewell AK; Jakobsen BK
    Mol Microbiol; 2001 Feb; 39(4):914-23. PubMed ID: 11251812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSF.
    Liu XD; Liu PC; Santoro N; Thiele DJ
    EMBO J; 1997 Nov; 16(21):6466-77. PubMed ID: 9351828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size doesn't matter in the heat shock response.
    Pincus D
    Curr Genet; 2017 May; 63(2):175-178. PubMed ID: 27502399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of thermotolerance by stress-induced transcription factors in Saccharomyces cerevisiae.
    Yamamoto N; Maeda Y; Ikeda A; Sakurai H
    Eukaryot Cell; 2008 May; 7(5):783-90. PubMed ID: 18359875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sir2 links the unfolded protein response and the heat shock response in a stress response network.
    Weindling E; Bar-Nun S
    Biochem Biophys Res Commun; 2015 Feb; 457(3):473-8. PubMed ID: 25600811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The oxidative stress response mediated via Pos9/Skn7 is negatively regulated by the Ras/PKA pathway in Saccharomyces cerevisiae.
    Charizanis C; Juhnke H; Krems B; Entian KD
    Mol Gen Genet; 1999 Jun; 261(4-5):740-52. PubMed ID: 10394911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 49.