BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 10889201)

  • 1. Three classes of ubiquinone analogs regulate the mitochondrial permeability transition pore through a common site.
    Walter L; Nogueira V; Leverve X; Heitz MP; Bernardi P; Fontaine E
    J Biol Chem; 2000 Sep; 275(38):29521-7. PubMed ID: 10889201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the mitochondrial permeability transition pore by ubiquinone analogs. A progress report.
    Walter L; Miyoshi H; Leverve X; Bernard P; Fontaine E
    Free Radic Res; 2002 Apr; 36(4):405-12. PubMed ID: 12069104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A ubiquinone-binding site regulates the mitochondrial permeability transition pore.
    Fontaine E; Ichas F; Bernardi P
    J Biol Chem; 1998 Oct; 273(40):25734-40. PubMed ID: 9748242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+-reversible inhibition of the mitochondrial megachannel by ubiquinone analogues.
    Martinucci S; Szabò I; Tombola F; Zoratti M
    FEBS Lett; 2000 Sep; 480(2-3):89-94. PubMed ID: 11034306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ubiquinone analogs: a mitochondrial permeability transition pore-dependent pathway to selective cell death.
    Devun F; Walter L; Belliere J; Cottet-Rousselle C; Leverve X; Fontaine E
    PLoS One; 2010 Jul; 5(7):e11792. PubMed ID: 20668684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benzoquinone inhibits the voltage-dependent induction of the mitochondrial permeability transition caused by redox-cycling naphthoquinones.
    Palmeira CM; Wallace KB
    Toxicol Appl Pharmacol; 1997 Apr; 143(2):338-47. PubMed ID: 9144450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opening of the mitochondrial permeability transition pore induces reactive oxygen species production at the level of the respiratory chain complex I.
    Batandier C; Leverve X; Fontaine E
    J Biol Chem; 2004 Apr; 279(17):17197-204. PubMed ID: 14963044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of the permeability transition in VDAC1(-/-) mitochondria.
    Krauskopf A; Eriksson O; Craigen WJ; Forte MA; Bernardi P
    Biochim Biophys Acta; 2006; 1757(5-6):590-5. PubMed ID: 16626625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prerequisites for ubiquinone analogs to prevent mitochondrial permeability transition-induced cell death.
    Belliere J; Devun F; Cottet-Rousselle C; Batandier C; Leverve X; Fontaine E
    J Bioenerg Biomembr; 2012 Feb; 44(1):207-12. PubMed ID: 22246424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand-selective modulation of the permeability transition pore by arginine modification. Opposing effects of p-hydroxyphenylglyoxal and phenylglyoxal.
    Linder MD; Morkunaite-Haimi S; Kinnunen PK; Bernardi P; Eriksson O
    J Biol Chem; 2002 Jan; 277(2):937-42. PubMed ID: 11698400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of substituents of the benzoquinone ring on electron-transfer activities of ubiquinone derivatives.
    Gu LQ; Yu L; Yu CA
    Biochim Biophys Acta; 1990 Feb; 1015(3):482-92. PubMed ID: 2154255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of decreasing mitochondrial volume on the regulation of the permeability transition pore.
    Nogueira V; Devin A; Walter L; Rigoulet M; Leverve X; Fontaine E
    J Bioenerg Biomembr; 2005 Feb; 37(1):25-33. PubMed ID: 15906146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional consequences of the sustained or transient activation by Bax of the mitochondrial permeability transition pore.
    Pastorino JG; Tafani M; Rothman RJ; Marcinkeviciute A; Hoek JB; Farber JL
    J Biol Chem; 1999 Oct; 274(44):31734-9. PubMed ID: 10531385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide and differential effects of ATP on mitochondrial permeability transition.
    Piantadosi CA; Tatro LG; Whorton AR
    Nitric Oxide; 2002 Feb; 6(1):45-60. PubMed ID: 11829534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of new ubiquinone-imidazo[2,1-b]thiazoles on mitochondrial complex I (NADH-ubiquinone reductase) and on mitochondrial permeability transition pore.
    Andreani A; Granaiola M; Leoni A; Locatelli A; Morigi R; Rambaldi M; Recanatini M; Lenaz G; Fato R; Bergamini C
    Bioorg Med Chem; 2004 Nov; 12(21):5525-32. PubMed ID: 15465329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the ubiquinone reduction site of mitochondrial complex I using bulky synthetic ubiquinones.
    Ohshima M; Miyoshi H; Sakamoto K; Takegami K; Iwata J; Kuwabara K; Iwamura H; Yagi T
    Biochemistry; 1998 May; 37(18):6436-45. PubMed ID: 9572861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of ubiquinone derivatives on the mitochondrial unselective channel of Saccharomyces cerevisiae.
    Gutiérrez-Aguilar M; López-Carbajal HM; Uribe-Alvarez C; Espinoza-Simón E; Rosas-Lemus M; Chiquete-Félix N; Uribe-Carvajal S
    J Bioenerg Biomembr; 2014 Dec; 46(6):519-27. PubMed ID: 25465614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid collapse of mitochondrial transmembrane potential in HL-60 cells and isolated mitochondria treated with anti-tumor 1,4-anthracenediones.
    Wang Y; Perchellet EM; Ward MM; Lou K; Hua DH; Perchellet JP
    Anticancer Drugs; 2005 Oct; 16(9):953-67. PubMed ID: 16162972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dependence of permeability transition pore opening and cytochrome C release from mitochondria on mitochondria energetic status.
    Huang X; Zhai D; Huang Y
    Mol Cell Biochem; 2001 Aug; 224(1-2):1-7. PubMed ID: 11693186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex II.
    Korge P; John SA; Calmettes G; Weiss JN
    J Biol Chem; 2017 Jun; 292(24):9896-9905. PubMed ID: 28450394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.