BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 10889252)

  • 1. Azuki bean cells are hypersensitive to cadmium and do not synthesize phytochelatins.
    Inouhe M; Ito R; Ito S; Sasada N; Tohoyama H; Joho M
    Plant Physiol; 2000 Jul; 123(3):1029-36. PubMed ID: 10889252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homo-phytochelatins are synthesized in response to cadmium in azuki beans.
    Oven M; Raith K; Neubert RH; Kutchan TM; Zenk MH
    Plant Physiol; 2001 Jul; 126(3):1275-80. PubMed ID: 11457978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of phytochelatin-cadmium complexes from plant tissue culture using nano-electrospray ionization tandem mass spectrometry and capillary liquid chromatography/electrospray ionization tandem mass spectrometry.
    Yen TY; Villa JA; DeWitt JG
    J Mass Spectrom; 1999 Sep; 34(9):930-41. PubMed ID: 10491589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy-metal accumulator Brassica juncea L.: evidence for Cd-induction of a putative mitochondrial gamma-glutamylcysteine synthetase isoform.
    Schäfer HJ; Haag-Kerwer A; Rausch T
    Plant Mol Biol; 1998 May; 37(1):87-97. PubMed ID: 9620267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of phytochelatin-related peptides in maize seedlings exposed to cadmium and obtained enzymatically in vitro.
    Chassaigne H; Vacchina V; Kutchan TM; Zenk MH
    Phytochemistry; 2001 Apr; 56(7):657-68. PubMed ID: 11314950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical responses of the marine macroalgae Ulva lactuca and Fucus vesiculosus to cadmium and copper-from sequestration to oxidative stress.
    Jervis L; Rees-Naesborg R; Brown M
    Biochem Soc Trans; 1997 Feb; 25(1):63S. PubMed ID: 9056961
    [No Abstract]   [Full Text] [Related]  

  • 7. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast.
    Clemens S; Kim EJ; Neumann D; Schroeder JI
    EMBO J; 1999 Jun; 18(12):3325-33. PubMed ID: 10369673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of prior Cd(2+) exposure on the uptake of Cd(2+) and other elements in the phytochelatin-deficient mutant, cad1-3, of Arabidopsis thaliana.
    Larsson EH; Asp H; Bornman JF
    J Exp Bot; 2002 Mar; 53(368):447-53. PubMed ID: 11847243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Function of phytochelatin synthase in catabolism of glutathione-conjugates.
    Blum R; Beck A; Korte A; Stengel A; Letzel T; Lendzian K; Grill E
    Plant J; 2007 Feb; 49(4):740-9. PubMed ID: 17253989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular toxicity of cadmium ions and their detoxification by heavy metal-specific plant peptides, phytochelatins, expressed in Mammalian cells.
    Takagi M; Satofuka H; Amano S; Mizuno H; Eguchi Y; Hirata K; Miyamoto K; Fukui K; Imanaka T
    J Biochem; 2002 Feb; 131(2):233-9. PubMed ID: 11820937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure.
    Heiss S; Wachter A; Bogs J; Cobbett C; Rausch T
    J Exp Bot; 2003 Aug; 54(389):1833-9. PubMed ID: 12815036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity.
    Li Y; Dhankher OP; Carreira L; Lee D; Chen A; Schroeder JI; Balish RS; Meagher RB
    Plant Cell Physiol; 2004 Dec; 45(12):1787-97. PubMed ID: 15653797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient.
    Howden R; Goldsbrough PB; Andersen CR; Cobbett CS
    Plant Physiol; 1995 Apr; 107(4):1059-66. PubMed ID: 7770517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress.
    Lee S; Moon JS; Ko TS; Petros D; Goldsbrough PB; Korban SS
    Plant Physiol; 2003 Feb; 131(2):656-63. PubMed ID: 12586889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of phytochelatins in Polygonum cuspidatum on exposure to copper but not to zinc.
    Imahara H; Hatayama T; Kuroda S; Horie Y; Inoue E; Wakatsuki T; Kitamura T; Fujimoto S; Ohara A; Hashimoto K
    J Pharmacobiodyn; 1992 Dec; 15(12):667-71. PubMed ID: 1363598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytochelatins and their roles in heavy metal detoxification.
    Cobbett CS
    Plant Physiol; 2000 Jul; 123(3):825-32. PubMed ID: 10889232
    [No Abstract]   [Full Text] [Related]  

  • 17. Enhancing the tolerance of zebrafish (Danio rerio) to heavy metal toxicity by the expression of plant phytochelatin synthase.
    Konishi T; Matsumoto S; Tsuruwaka Y; Shiraki K; Hirata K; Tamaru Y; Takagi M
    J Biotechnol; 2006 Apr; 122(3):316-25. PubMed ID: 16442656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cadmium uptake by Caco-2 cells: effects of Cd complexation by chloride, glutathione, and phytochelatins.
    Jumarie C; Fortin C; Houde M; Campbell PG; Denizeau F
    Toxicol Appl Pharmacol; 2001 Jan; 170(1):29-38. PubMed ID: 11141353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy metal detoxification in higher plants--a review.
    Zenk MH
    Gene; 1996 Nov; 179(1):21-30. PubMed ID: 8955625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new pathway for heavy metal detoxification in animals. Phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans.
    Vatamaniuk OK; Bucher EA; Ward JT; Rea PA
    J Biol Chem; 2001 Jun; 276(24):20817-20. PubMed ID: 11313333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.