These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 10889262)

  • 1. Identification of natural rubber and characterization of rubber biosynthetic activity in fig tree.
    Kang H; Kang MY; Han KH
    Plant Physiol; 2000 Jul; 123(3):1133-42. PubMed ID: 10889262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification of a prenyltransferase that elongates cis-polyisoprene rubber from the latex of Hevea brasiliensis.
    Light DR; Dennis MS
    J Biol Chem; 1989 Nov; 264(31):18589-97. PubMed ID: 2808388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rubber elongation factor from Hevea brasiliensis. Identification, characterization, and role in rubber biosynthesis.
    Dennis MS; Light DR
    J Biol Chem; 1989 Nov; 264(31):18608-17. PubMed ID: 2681199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of rubber biosynthetic rate and molecular weight in Hevea brasiliensis by metal cofactor.
    da Costa BM; Keasling JD; Cornish K
    Biomacromolecules; 2005; 6(1):279-89. PubMed ID: 15638531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Initiation of rubber biosynthesis: In vitro comparisons of benzophenone-modified diphosphate analogues in three rubber-producing species.
    Xie W; McMahan CM; Degraw AJ; Distefano MD; Cornish K; Whalen MC; Shintani DK
    Phytochemistry; 2008 Oct; 69(14):2539-45. PubMed ID: 18799172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rubber elongation by farnesyl pyrophosphate synthases involves a novel switch in enzyme stereospecificity.
    Light DR; Lazarus RA; Dennis MS
    J Biol Chem; 1989 Nov; 264(31):18598-607. PubMed ID: 2808389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of rubber particles and rubber chain elongation in Taraxacum koksaghyz.
    Schmidt T; Lenders M; Hillebrand A; van Deenen N; Munt O; Reichelt R; Eisenreich W; Fischer R; Prüfer D; Gronover CS
    BMC Biochem; 2010 Feb; 11():11. PubMed ID: 20170509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extraction and characterization of a natural rubber from Euphorbia characias latex.
    Spanò D; Pintus F; Mascia C; Scorciapino MA; Casu M; Floris G; Medda R
    Biopolymers; 2012 Aug; 97(8):589-94. PubMed ID: 22605550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Mechanisms of Natural Rubber Biosynthesis.
    Yamashita S; Takahashi S
    Annu Rev Biochem; 2020 Jun; 89():821-851. PubMed ID: 32228045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro synthesis of high molecular weight rubber by Hevea small rubber particles.
    Rojruthai P; Sakdapipanich JT; Takahashi S; Hyegin L; Noike M; Koyama T; Tanaka Y
    J Biosci Bioeng; 2010 Feb; 109(2):107-14. PubMed ID: 20129092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural rubber biosynthesis in plants: rubber transferase.
    Cornish K; Xie W
    Methods Enzymol; 2012; 515():63-82. PubMed ID: 22999170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitation of isoprenoids for natural rubber biosynthesis in natural rubber latex by liquid chromatography with tandem mass spectrometry.
    Zhang X; Guo T; Xiang T; Dong Y; Zhang J; Zhang L
    J Chromatogr A; 2018 Jul; 1558():115-119. PubMed ID: 29773339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporation of deuterium-labelled analogs of isopentenyl diphosphate for the elucidation of the stereochemistry of rubber biosynthesis.
    Scholte AA; Vederas JC
    Org Biomol Chem; 2006 Feb; 4(4):730-42. PubMed ID: 16467948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnesium ion regulation of in vitro rubber biosynthesis by Parthenium argentatum Gray.
    da Costa BM; Keasling JD; McMahan CM; Cornish K
    Phytochemistry; 2006 Aug; 67(15):1621-8. PubMed ID: 16780905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel cDNA from Parthenium argentatum Gray enhances the rubber biosynthetic activity in vitro.
    Kim IJ; Ryu SB; Kwak YS; Kang H
    J Exp Bot; 2004 Feb; 55(396):377-85. PubMed ID: 14718497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of stress-related genes of rubber particles and latex in fig tree (Ficus carica) and their expressions by abiotic stress or plant hormone treatments.
    Kim JS; Kim YO; Ryu HJ; Kwak YS; Lee JY; Kang H
    Plant Cell Physiol; 2003 Apr; 44(4):412-4. PubMed ID: 12721382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isopentenyl Pyrophosphate cis-1,4-Polyisoprenyl Transferase from Guayule (Parthenium argentatum Gray).
    Madhavan S; Benedict CR
    Plant Physiol; 1984 Aug; 75(4):908-13. PubMed ID: 16663758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extraction and characterization of latex and natural rubber from rubber-bearing plants.
    Buranov AU; Elmuradov BJ
    J Agric Food Chem; 2010 Jan; 58(2):734-43. PubMed ID: 20000314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of genes from Streptomyces sp. strain K30 responsible for clear zone formation on natural rubber latex and poly(cis-1,4-isoprene) rubber degradation.
    Rose K; Tenberge KB; Steinbüchel A
    Biomacromolecules; 2005; 6(1):180-8. PubMed ID: 15638519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of associated proteins and phospholipids in natural rubber latex.
    Sansatsadeekul J; Sakdapipanich J; Rojruthai P
    J Biosci Bioeng; 2011 Jun; 111(6):628-34. PubMed ID: 21354367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.