These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 10889991)

  • 1. Selection for RNA: peptide recognition through sulfur alkylation chemistry.
    Wecker M; Smith D
    Methods Enzymol; 2000; 318():229-37. PubMed ID: 10889991
    [No Abstract]   [Full Text] [Related]  

  • 2. In vitro selection of a novel catalytic RNA: characterization of a sulfur alkylation reaction and interaction with a small peptide.
    Wecker M; Smith D; Gold L
    RNA; 1996 Oct; 2(10):982-94. PubMed ID: 8849775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separating and analyzing sulfur-containing RNAs with organomercury gels.
    Biondi E; Burke DH
    Methods Mol Biol; 2012; 883():111-20. PubMed ID: 22589128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of tRNAs and of phosphorothioate-substituted nucleic acids with an organomercurial. Probing the chemical environment of thiolated residues by affinity electrophoresis.
    Igloi GL
    Biochemistry; 1988 May; 27(10):3842-9. PubMed ID: 3044450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantiomeric cross-inhibition in the synthesis of oligonucleotides on a nonchiral template.
    Schmidt JG; Nielsen PE; Orgel LE
    J Am Chem Soc; 1997 Feb; 119(6):1494-5. PubMed ID: 11539924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient synthesis of 3'-O-triazole modified guanosine-5'-O-monophosphate using click chemistry.
    Senthilvelan A; Shanmugasundaram M; Kore AR
    Nucleosides Nucleotides Nucleic Acids; 2019; 38(6):418-427. PubMed ID: 30938235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of a biotinylated photocleavable nucleotide monophosphate for the preparation of natively folded RNAs.
    Luo Y; Sintim HO; Dayie TK
    Methods Enzymol; 2014; 549():115-31. PubMed ID: 25432747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalysis of accurate poly(C)-directed synthesis of 3'-5'-linked oligoguanylates by Zn2+.
    Bridson PK; Orgel LE
    J Mol Biol; 1980 Dec; 144(4):567-77. PubMed ID: 6265649
    [No Abstract]   [Full Text] [Related]  

  • 9. Kinetics of coupling reactions that generate monothiophosphate disulfides: implications for modification of RNAs.
    Wu CW; Eder PS; Gopalan V; Behrman EJ
    Bioconjug Chem; 2001; 12(6):842-4. PubMed ID: 11716671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guanosine 5'-O-[S-(3-bromo-2-oxopropyl)]thiophosphate: a new reactive purine nucleotide analog labeling Met-169 and Tyr-262 in bovine liver glutamate dehydrogenase.
    Ozturk DH; Park I; Colman RF
    Biochemistry; 1992 Nov; 31(43):10544-55. PubMed ID: 1329952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonenzymatic synthesis of RNA and DNA oligomers on hexitol nucleic acid templates: the importance of the A structure.
    Kozlov IA; Politis PK; Van Aerschot A; Busson R; Herdewijn P; Orgel LE
    J Am Chem Soc; 1999 Mar; 121(12):2653-6. PubMed ID: 11543583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Template-directed synthesis of oligoguanylates in the presence of metal ions.
    van Roode JH; Orgel LE
    J Mol Biol; 1980 Dec; 144(4):579-85. PubMed ID: 6265650
    [No Abstract]   [Full Text] [Related]  

  • 13. In vitro selection and characterization of RNAs with high affinity to antibiotics.
    Wallace ST; Schroeder R
    Methods Enzymol; 2000; 318():214-29. PubMed ID: 10889990
    [No Abstract]   [Full Text] [Related]  

  • 14. Identification of the HcgB enzyme in [Fe]-hydrogenase-cofactor biosynthesis.
    Fujishiro T; Tamura H; Schick M; Kahnt J; Xie X; Ermler U; Shima S
    Angew Chem Int Ed Engl; 2013 Nov; 52(48):12555-8. PubMed ID: 24249552
    [No Abstract]   [Full Text] [Related]  

  • 15. In vitro selection of RNA substrates for ribonuclease P and its catalytic RNA.
    Liu F; Wang J; Trang P
    Methods Enzymol; 2000; 318():238-50. PubMed ID: 10889992
    [No Abstract]   [Full Text] [Related]  

  • 16. Adsorption mechanisms of RNA mononucleotides on silver nanoparticles.
    Miljanić S; Dijanošić A; Matić I
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():1357-62. PubMed ID: 25306131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partial molar volumes of mRNA 5' cap analogues.
    Szymanski J; Stepinski J; Poznanski J; Darzynkiewicz E; Zielenkiewicz W; Stolarski R
    Nucleosides Nucleotides Nucleic Acids; 2003; 22(5-8):1553-6. PubMed ID: 14565464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dependence on potassium concentration of the inhibition of the translation of messenger ribonucleic acid by 7-methylguanosine 5'-phosphate.
    Kemper B; Stolarsky L
    Biochemistry; 1977 Dec; 16(26):5676-80. PubMed ID: 201273
    [No Abstract]   [Full Text] [Related]  

  • 19. RNA polymerase of influenza virus. I. Comparison of the virion-associated RNA polymerase activity of various strains of influenza virus.
    Kawakami K; Ishihama A; Hamaguchi M
    J Biochem; 1981 Jun; 89(6):1751-7. PubMed ID: 6270072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human taste and umami receptor responses to chemosensorica generated by Maillard-type N²-alkyl- and N²-arylthiomethylation of guanosine 5'-monophosphates.
    Suess B; Brockhoff A; Degenhardt A; Billmayer S; Meyerhof W; Hofmann T
    J Agric Food Chem; 2014 Nov; 62(47):11429-40. PubMed ID: 25375264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.