These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 1089014)
1. Use of chromium-adenosine triphosphate and lyxose to elucidate the kinetic mechanism and coordination state of the nucleotide substrate for yeast hexokinase. Danenberg KD; Cleland WW Biochemistry; 1975 Jan; 14(1):28-39. PubMed ID: 1089014 [TBL] [Abstract][Full Text] [Related]
2. Magnetic resonance studies of the spatial arrangement of glucose-6-phosphate and chromium (III)-adenosine diphosphate at the catalytic site of hexokinase. Petersen RL; Gupta BK Biophys J; 1979 Jul; 27(1):1-14. PubMed ID: 233578 [TBL] [Abstract][Full Text] [Related]
3. Kinetic studies of rat liver hexokinase D ('glucokinase') in non-co-operative conditions show an ordered mechanism with MgADP as the last product to be released. Monasterio O; Cárdenas ML Biochem J; 2003 Apr; 371(Pt 1):29-38. PubMed ID: 12513690 [TBL] [Abstract][Full Text] [Related]
4. pH-dependent effects of Cr(NH3)2ATP on kinetics of yeast hexokinase PII. Relationship to the slow transition mechanism. Peters BA; Neet KE J Biol Chem; 1976 Dec; 251(23):7521-5. PubMed ID: 12169 [TBL] [Abstract][Full Text] [Related]
5. Substrate synergism and the kinetic mechanism of yeast hexokinase. Viola RE; Raushel FM; Rendina AR; Cleland WW Biochemistry; 1982 Mar; 21(6):1295-302. PubMed ID: 7041974 [TBL] [Abstract][Full Text] [Related]
6. Inactivation of yeast phosphoglycerate kinase by Cr-ATP complexes and its implications on the conformation of the enzyme active site. Serpersu EH; Summitt LL; Gregory JD J Inorg Biochem; 1992 Nov; 48(3):203-15. PubMed ID: 1447568 [TBL] [Abstract][Full Text] [Related]
7. 6-(p-toluidinyl)naphthalene-2-sulfonic acid as a fluorescent probe of yeast hexokinase: conformational states induced by sugar and nucleotide ligands. Ohning GV; Neet KE Biochemistry; 1983 Jun; 22(12):2986-95. PubMed ID: 6347255 [TBL] [Abstract][Full Text] [Related]
8. Evidence for the direct interaction between tightly bound divalent metal ion and ATP on actin. Binding of the lambda isomers of beta gamma-bidentate CrATP to actin. Valentin-Ranc C; Carlier MF J Biol Chem; 1989 Dec; 264(35):20871-80. PubMed ID: 2556388 [TBL] [Abstract][Full Text] [Related]
9. alpha, beta-Bidentate CrADP abolishes the negative cooperativity of yeast mitochondrial F1-ATPase. Wieker HJ; Hess B Biochim Biophys Acta; 1985 Jan; 806(1):35-41. PubMed ID: 2857090 [TBL] [Abstract][Full Text] [Related]
10. Effect of CrATP on the association of the reacting forms of yeast hexokinase. Yip BP; Rudolph FB J Biol Chem; 1977 Mar; 252(6):1844-6. PubMed ID: 321444 [TBL] [Abstract][Full Text] [Related]
12. Inactivation of (Na+ + K+)-ATPase by chromium(III) complexes of nucleotide triphosphates. Pauls H; Bredenbröcker B; Schoner W Eur J Biochem; 1980 Aug; 109(2):523-33. PubMed ID: 6250846 [TBL] [Abstract][Full Text] [Related]
13. Chromium(III)-adenosine triphosphate as a paramagnetic probe to determine intersubstrate distances on pyruvate kinase. Detection of an active enzyme-metal-ATP-metal complex. Gupta RK; Fung CH; Mildvan AS J Biol Chem; 1976 Apr; 251(8):2421-30. PubMed ID: 177415 [TBL] [Abstract][Full Text] [Related]
14. The structure of the MnIIADP-nitrate-lyxose complex at the active site of hexokinase. Olsen LR; Reed GH Arch Biochem Biophys; 1993 Jul; 304(1):242-7. PubMed ID: 8391783 [TBL] [Abstract][Full Text] [Related]
15. Structural preferences for the binding of chromium nucleotides by beef heart mitochondrial ATPase. Bossard MJ; Schuster SM J Biol Chem; 1981 Jul; 256(13):6617-22. PubMed ID: 6453868 [TBL] [Abstract][Full Text] [Related]
16. Chromium(III)ATP inactivating (Na+ + K+)-ATPase supports Na+-Na+ and Rb+-Rb+ exchanges in everted red blood cells but not Na+,K+ transport. Pauls H; Serpersu EH; Kirch U; Schoner W Eur J Biochem; 1986 Jun; 157(3):585-95. PubMed ID: 2424757 [TBL] [Abstract][Full Text] [Related]
17. Rat liver pyruvate carboxylase. Inhibition by chromium nucleotide complexes. Armbruster DA; Rudolph FB J Biol Chem; 1976 Jan; 251(2):320-3. PubMed ID: 1245476 [TBL] [Abstract][Full Text] [Related]
18. Suppression of kinetic cooperativity of hexokinase D (glucokinase) by competitive inhibitors. A slow transition model. Cárdenas ML; Rabajille E; Niemeyer H Eur J Biochem; 1984 Nov; 145(1):163-71. PubMed ID: 6489350 [TBL] [Abstract][Full Text] [Related]
19. Nucleotide and sugar substrate-binding sites on yeast hexokinase in solution as the native dimeric or monomeric form [proceedings]. Bhargava AK; Otieno S; Serelis D; Barnard EA Biochem Soc Trans; 1977; 5(3):765-7. PubMed ID: 332561 [No Abstract] [Full Text] [Related]
20. A kinetic method for determining dissociation constants for metal complexes of adenosine 5'-triphosphate and adenosine 5'-diphosphate. Morrison JF; Cleland WW Biochemistry; 1980 Jul; 19(14):3127-31. PubMed ID: 7407034 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]