These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 10890440)

  • 1. Structural basis for the fracture toughness of the shell of the conch Strombus gigas.
    Kamat S; Su X; Ballarini R; Heuer AH
    Nature; 2000 Jun; 405(6790):1036-40. PubMed ID: 10890440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of toughening mechanisms in the Strombus gigas shell.
    DiPette S; Ural A; Santhanam S
    J Mech Behav Biomed Mater; 2015 Aug; 48():200-209. PubMed ID: 25955562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructure and crystallographic texture of Charonia lampas lampas shell.
    Ouhenia S; Chateigner D; Belkhir MA; Guilmeau E
    J Struct Biol; 2008 Aug; 163(2):175-84. PubMed ID: 18586518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale hierarchical assembly strategy and mechanical prowess in conch shells (Busycon carica).
    Li H; Xu ZH; Li X
    J Struct Biol; 2013 Dec; 184(3):409-16. PubMed ID: 24184467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tough, bio-inspired hybrid materials.
    Munch E; Launey ME; Alsem DH; Saiz E; Tomsia AP; Ritchie RO
    Science; 2008 Dec; 322(5907):1516-20. PubMed ID: 19056979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties of crossed-lamellar structures in biological shells: A review.
    Li XW; Ji HM; Yang W; Zhang GP; Chen DL
    J Mech Behav Biomed Mater; 2017 Oct; 74():54-71. PubMed ID: 28550764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties of modern calcite- (Mergerlia truncata) and phosphate-shelled brachiopods (Discradisca stella and Lingula anatina) determined by nanoindentation.
    Merkel C; Deuschle J; Griesshaber E; Enders S; Steinhauser E; Hochleitner R; Brand U; Schmahl WW
    J Struct Biol; 2009 Dec; 168(3):396-408. PubMed ID: 19729068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a high fracture toughness composite ceramic for dental applications.
    Aboushelib MN; Kleverlaan CJ; Feilzer AJ
    J Prosthodont; 2008 Oct; 17(7):538-44. PubMed ID: 18761572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The shell organic matrix of the crossed lamellar queen conch shell (Strombus gigas).
    Osuna-MascarĂ³ A; Cruz-Bustos T; Benhamada S; Guichard N; Marie B; Plasseraud L; Corneillat M; Alcaraz G; Checa A; Marin F
    Comp Biochem Physiol B Biochem Mol Biol; 2014 Feb; 168():76-85. PubMed ID: 24291423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cymbiola nobilis shell: Toughening mechanisms in a crossed-lamellar structure.
    Ji H; Li X; Chen D
    Sci Rep; 2017 Jan; 7():40043. PubMed ID: 28094256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. R-curve behavior and micromechanisms of fracture in resin based dental restorative composites.
    Shah MB; Ferracane JL; Kruzic JJ
    J Mech Behav Biomed Mater; 2009 Oct; 2(5):502-11. PubMed ID: 19627857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nacre from mollusk shells: a model for high-performance structural materials.
    Barthelat F
    Bioinspir Biomim; 2010 Sep; 5(3):035001. PubMed ID: 20729573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fracture toughness of nine flowable resin composites.
    Bonilla ED; Yashar M; Caputo AA
    J Prosthet Dent; 2003 Mar; 89(3):261-7. PubMed ID: 12644801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New toughening concepts for ceramic composites from rigid natural materials.
    Mayer G
    J Mech Behav Biomed Mater; 2011 Jul; 4(5):670-81. PubMed ID: 21565715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced toughening of the crossed lamellar structure revealed by nanoindentation.
    Salinas CL; de Obaldia EE; Jeong C; Hernandez J; Zavattieri P; Kisailus D
    J Mech Behav Biomed Mater; 2017 Dec; 76():58-68. PubMed ID: 28602753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics.
    Guazzato M; Albakry M; Ringer SP; Swain MV
    Dent Mater; 2004 Jun; 20(5):441-8. PubMed ID: 15081550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The weak interfaces within tough natural composites: experiments on three types of nacre.
    Khayer Dastjerdi A; Rabiei R; Barthelat F
    J Mech Behav Biomed Mater; 2013 Mar; 19():50-60. PubMed ID: 23084045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interstitial crystal-nucleating sheet in molluscan Haliotis rufescens shell: a bio-polymeric composite.
    Falini G; Sartor G; Fabbri D; Vergni P; Fermani S; Belcher AM; Stucky GD; Morse DE
    J Struct Biol; 2011 Jan; 173(1):128-37. PubMed ID: 20705141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A continuous damage random thresholds model for simulating the fracture behavior of nacre.
    Nukala PK; Simunovic S
    Biomaterials; 2005 Oct; 26(30):6087-98. PubMed ID: 15958244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.