BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 10890923)

  • 21. Solution structure of an antimicrobial peptide buforin II.
    Yi GS; Park CB; Kim SC; Cheong C
    FEBS Lett; 1996 Nov; 398(1):87-90. PubMed ID: 8946958
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of the hinge region of cecropin A(1-8)-magainin 2(1-12), a synthetic antimicrobial peptide, on liposomes, bacterial and tumor cells.
    Shin SY; Kang JH; Jang SY; Kim Y; Kim KL; Hahm KS
    Biochim Biophys Acta; 2000 Feb; 1463(2):209-18. PubMed ID: 10675500
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rationally designed α-helical broad-spectrum antimicrobial peptides with idealized facial amphiphilicity.
    Wiradharma N; Sng MY; Khan M; Ong ZY; Yang YY
    Macromol Rapid Commun; 2013 Jan; 34(1):74-80. PubMed ID: 23112127
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pepsin-mediated processing of the cytoplasmic histone H2A to strong antimicrobial peptide buforin I.
    Kim HS; Yoon H; Minn I; Park CB; Lee WT; Zasloff M; Kim SC
    J Immunol; 2000 Sep; 165(6):3268-74. PubMed ID: 10975843
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Large-scale synthesis and functional elements for the antimicrobial activity of defensins.
    Raj PA; Antonyraj KJ; Karunakaran T
    Biochem J; 2000 May; 347 Pt 3(Pt 3):633-41. PubMed ID: 10769165
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Translocating proline-rich peptides from the antimicrobial peptide bactenecin 7.
    Sadler K; Eom KD; Yang JL; Dimitrova Y; Tam JP
    Biochemistry; 2002 Dec; 41(48):14150-7. PubMed ID: 12450378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain.
    Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M
    Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cell selectivity, mechanism of action and LPS-neutralizing activity of bovine myeloid antimicrobial peptide-18 (BMAP-18) and its analogs.
    Lee EK; Kim YC; Nan YH; Shin SY
    Peptides; 2011 Jun; 32(6):1123-30. PubMed ID: 21497177
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering of a linear inactive analog of human β-defensin 4 to generate peptides with potent antimicrobial activity.
    Sharma H; Mathew B; Nagaraj R
    J Pept Sci; 2015 Jun; 21(6):501-11. PubMed ID: 25810238
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A synthetic form of tracheal antimicrobial peptide has both bactericidal and antifungal activities.
    Lawyer C; Watabe M; Pai S; Bakir H; Eagleton L; Mashimo T; Watabe K
    Drug Des Discov; 1996 Dec; 14(3):171-8. PubMed ID: 9017361
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of arginine and lysine in the antimicrobial mechanism of histone-derived antimicrobial peptides.
    Cutrona KJ; Kaufman BA; Figueroa DM; Elmore DE
    FEBS Lett; 2015 Dec; 589(24 Pt B):3915-20. PubMed ID: 26555191
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lentivirus-derived antimicrobial peptides: increased potency by sequence engineering and dimerization.
    Tencza SB; Creighton DJ; Yuan T; Vogel HJ; Montelaro RC; Mietzner TA
    J Antimicrob Chemother; 1999 Jul; 44(1):33-41. PubMed ID: 10459808
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antimicrobial and cytolytic properties of the frog skin peptide, kassinatuerin-1 and its L- and D-lysine-substituted derivatives.
    Conlon JM; Abraham B; Galadari S; Knoop FC; Sonnevend A; Pál T
    Peptides; 2005 Nov; 26(11):2104-10. PubMed ID: 15885852
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Magainins: sequence factors relevant to increased antimicrobial activity and decreased hemolytic activity.
    Cuervo JH; Rodriguez B; Houghten RA
    Pept Res; 1988; 1(2):81-6. PubMed ID: 2980783
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural contributions to the intracellular targeting strategies of antimicrobial peptides.
    Lan Y; Ye Y; Kozlowska J; Lam JK; Drake AF; Mason AJ
    Biochim Biophys Acta; 2010 Oct; 1798(10):1934-43. PubMed ID: 20637722
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis and biological activity of lipophilic analogs of the cationic antimicrobial active peptide anoplin.
    Chionis K; Krikorian D; Koukkou AI; Sakarellos-Daitsiotis M; Panou-Pomonis E
    J Pept Sci; 2016 Nov; 22(11-12):731-736. PubMed ID: 27862650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Covalent structure, synthesis, and structure-function studies of mesentericin Y 105(37), a defensive peptide from gram-positive bacteria Leuconostoc mesenteroides.
    Fleury Y; Dayem MA; Montagne JJ; Chaboisseau E; Le Caer JP; Nicolas P; Delfour A
    J Biol Chem; 1996 Jun; 271(24):14421-9. PubMed ID: 8662868
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Membrane translocation mechanism of the antimicrobial peptide buforin 2.
    Kobayashi S; Chikushi A; Tougu S; Imura Y; Nishida M; Yano Y; Matsuzaki K
    Biochemistry; 2004 Dec; 43(49):15610-6. PubMed ID: 15581374
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Truncated and constrained helical analogs of antimicrobial esculentin-2EM.
    Pham TK; Kim DH; Lee BJ; Kim YW
    Bioorg Med Chem Lett; 2013 Dec; 23(24):6717-20. PubMed ID: 24211019
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The NH2-terminal alpha-helical domain 1-18 of dermaseptin is responsible for antimicrobial activity.
    Mor A; Nicolas P
    J Biol Chem; 1994 Jan; 269(3):1934-9. PubMed ID: 8294443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.