These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 10891221)
1. Substrate mimetics and freezing strategy: a useful combination that broadens the scope of proteases for synthesis. Wehofsky N; Kirbach SW; Haensler M; Wissmann JD; Bordusa F Org Lett; 2000 Jul; 2(14):2027-30. PubMed ID: 10891221 [TBL] [Abstract][Full Text] [Related]
2. Reverse proteolysis promoted by in situ generated peptide ester fragments. Wehofsky N; Koglin N; Thust S; Bordusa F J Am Chem Soc; 2003 May; 125(20):6126-33. PubMed ID: 12785843 [TBL] [Abstract][Full Text] [Related]
3. Protease-catalyzed fragment condensation via substrate mimetic strategy: a useful combination of solid-phase peptide synthesis with enzymatic methods. Cerovský V; Bordusa F J Pept Res; 2000 Apr; 55(4):325-9. PubMed ID: 10798378 [TBL] [Abstract][Full Text] [Related]
4. Substrate mimetics in protease catalysis: characteristics, kinetics, and synthetic utility. Bordusa F Curr Protein Pept Sci; 2002 Apr; 3(2):159-80. PubMed ID: 12188901 [TBL] [Abstract][Full Text] [Related]
5. Protease-catalyzed peptide synthesis in frozen aqueous systems: the "freeze-concentration model". Schuster M; Aaviksaar A; Haga M; Ullmann U; Jakubke HD Biomed Biochim Acta; 1991; 50(10-11):S84-9. PubMed ID: 1820066 [TBL] [Abstract][Full Text] [Related]
6. Protease-catalyzed peptide synthesis for the site-specific incorporation of alpha-fluoroalkyl amino acids into peptides. Thust S; Koksch B J Org Chem; 2003 Mar; 68(6):2290-6. PubMed ID: 12636393 [TBL] [Abstract][Full Text] [Related]
7. Immobilization-stabilization of proteases as a tool to improve the industrial design of peptide synthesis. Blanco RM; Bastida A; Cuesta C; Alvaro G; Fernandez-Lafuente R; Rosell CM; Guisan JM Biomed Biochim Acta; 1991; 50(10-11):S110-3. PubMed ID: 1820029 [TBL] [Abstract][Full Text] [Related]
8. Nonconventional amide bond formation catalysis: programming enzyme specificity with substrate mimetics. Bordusa F Braz J Med Biol Res; 2000 May; 33(5):469-85. PubMed ID: 10775878 [TBL] [Abstract][Full Text] [Related]
9. Aminolysis of acyl-chymotrypsins by amino acids. Kinetic appearance of concentration effect in peptide yield enhancement by freezing. Töugu V; Talts P; Meos H; Haga M; Aaviksaar A Biochim Biophys Acta; 1995 Mar; 1247(2):272-6. PubMed ID: 7696319 [TBL] [Abstract][Full Text] [Related]
10. Nonconventional protease catalysis in frozen aqueous solutions. Hänsler M; Jakubke HD J Pept Sci; 1996; 2(5):279-89. PubMed ID: 9230456 [TBL] [Abstract][Full Text] [Related]
11. Trypsin-specific acyl-4-guanidinophenyl esters for alpha-chymotrypsin-catalysed reactions computational predictions, hydrolyses, and peptide bond formation. Günther R; Thust S; Hofmann HJ; Bordusa F Eur J Biochem; 2000 Jun; 267(12):3496-501. PubMed ID: 10848965 [TBL] [Abstract][Full Text] [Related]
12. Enzymatic coupling of specific peptides at nonspecific ligation sites: effect of Asp189Glu mutation in trypsin on substrate mimetic-mediated reactions. Xu S; Rall K; Bordusa F J Org Chem; 2001 Mar; 66(5):1627-32. PubMed ID: 11262106 [TBL] [Abstract][Full Text] [Related]
14. Protease-catalyzed hydrolysis of substrate mimetics (inverse substrates): A new approach reveals a new mechanism. Thormann M; Thust S; Hofmann HJ; Bordusa F Biochemistry; 1999 May; 38(19):6056-62. PubMed ID: 10320331 [TBL] [Abstract][Full Text] [Related]
15. Use of Z-amino acid-glyceryl esters in protease catalyzed peptide synthesis. Wiese J; Gattner HG; Zahn H Biomed Biochim Acta; 1991; 50(10-11):S90-3. PubMed ID: 1820068 [TBL] [Abstract][Full Text] [Related]
16. Mapping the S' subsites of serine proteases using acyl transfer to mixtures of peptide nucleophiles. Schellenberger V; Turck CW; Hedstrom L; Rutter WJ Biochemistry; 1993 Apr; 32(16):4349-53. PubMed ID: 8476865 [TBL] [Abstract][Full Text] [Related]
17. Role of the S' subsites in serine protease catalysis. Active-site mapping of rat chymotrypsin, rat trypsin, alpha-lytic protease, and cercarial protease from Schistosoma mansoni. Schellenberger V; Turck CW; Rutter WJ Biochemistry; 1994 Apr; 33(14):4251-7. PubMed ID: 8155642 [TBL] [Abstract][Full Text] [Related]
18. Enzymatic peptide synthesis in frozen aqueous systems: influence of modified reaction conditions on the peptide yield. Gerisch S; Ullmann G; Stubenrauch K; Jakubke HD Biol Chem Hoppe Seyler; 1994 Dec; 375(12):825-8. PubMed ID: 7710698 [TBL] [Abstract][Full Text] [Related]
19. Substrate mimetics-specific peptide ligases: studies on the synthetic utility of a zymogen and zymogen-like enzymes. Rall K; Bordusa F J Org Chem; 2002 Dec; 67(25):9103-6. PubMed ID: 12467440 [TBL] [Abstract][Full Text] [Related]
20. On the rational design of substrate mimetics: The function of docking approaches for the prediction of protease specificities. Günther R; Elsner C; Schmidt S; Hofmann HJ; Bordusa F Org Biomol Chem; 2004 May; 2(10):1442-6. PubMed ID: 15136799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]