BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1901 related articles for article (PubMed ID: 10891285)

  • 1. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence.
    Emanuelsson O; Nielsen H; Brunak S; von Heijne G
    J Mol Biol; 2000 Jul; 300(4):1005-16. PubMed ID: 10891285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome.
    Zybailov B; Rutschow H; Friso G; Rudella A; Emanuelsson O; Sun Q; van Wijk KJ
    PLoS One; 2008 Apr; 3(4):e1994. PubMed ID: 18431481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LumenP--a neural network predictor for protein localization in the thylakoid lumen.
    Westerlund I; Von Heijne G; Emanuelsson O
    Protein Sci; 2003 Oct; 12(10):2360-6. PubMed ID: 14500894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites.
    Nielsen H; Engelbrecht J; Brunak S; von Heijne G
    Int J Neural Syst; 1997; 8(5-6):581-99. PubMed ID: 10065837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites.
    Emanuelsson O; Nielsen H; von Heijne G
    Protein Sci; 1999 May; 8(5):978-84. PubMed ID: 10338008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual targeting properties of the N-terminal signal sequence of Arabidopsis thaliana THI1 protein to mitochondria and chloroplasts.
    Chabregas SM; Luche DD; Farias LP; Ribeiro AF; van Sluys MA; Menck CF; Silva-Filho MC
    Plant Mol Biol; 2001 Aug; 46(6):639-50. PubMed ID: 11575719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of the subcellular localization of eukaryotic proteins using sequence signals and composition.
    Reczko M; Hatzigerrorgiou A
    Proteomics; 2004 Jun; 4(6):1591-6. PubMed ID: 15174129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refining the definition of plant mitochondrial presequences through analysis of sorting signals, N-terminal modifications, and cleavage motifs.
    Huang S; Taylor NL; Whelan J; Millar AH
    Plant Physiol; 2009 Jul; 150(3):1272-85. PubMed ID: 19474214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Mechanism of the Specificity of Protein Import into Chloroplasts and Mitochondria in Plant Cells.
    Lee DW; Lee S; Lee J; Woo S; Razzak MA; Vitale A; Hwang I
    Mol Plant; 2019 Jul; 12(7):951-966. PubMed ID: 30890495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloroplast transit peptide prediction: a peek inside the black box.
    Schein AI; Kissinger JC; Ungar LH
    Nucleic Acids Res; 2001 Aug; 29(16):E82. PubMed ID: 11504890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Bayesian system integrating expression data with sequence patterns for localizing proteins: comprehensive application to the yeast genome.
    Drawid A; Gerstein M
    J Mol Biol; 2000 Aug; 301(4):1059-75. PubMed ID: 10966805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detecting and sorting targeting peptides with neural networks and support vector machines.
    Hawkins J; Bodén M
    J Bioinform Comput Biol; 2006 Feb; 4(1):1-18. PubMed ID: 16568539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PredSL: a tool for the N-terminal sequence-based prediction of protein subcellular localization.
    Petsalaki EI; Bagos PG; Litou ZI; Hamodrakas SJ
    Genomics Proteomics Bioinformatics; 2006 Feb; 4(1):48-55. PubMed ID: 16689702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mimicking cellular sorting improves prediction of subcellular localization.
    Nair R; Rost B
    J Mol Biol; 2005 Apr; 348(1):85-100. PubMed ID: 15808855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Locating proteins in the cell using TargetP, SignalP and related tools.
    Emanuelsson O; Brunak S; von Heijne G; Nielsen H
    Nat Protoc; 2007; 2(4):953-71. PubMed ID: 17446895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial and chloroplast targeting sequences in tandem modify protein import specificity in plant organelles.
    de Castro Silva Filho M; Chaumont F; Leterme S; Boutry M
    Plant Mol Biol; 1996 Feb; 30(4):769-80. PubMed ID: 8624408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and biochemical characterization of Arabidopsis At-NEET, an ancient iron-sulfur protein, reveals a conserved cleavage motif for subcellular localization.
    Su LW; Chang SH; Li MY; Huang HY; Jane WN; Yang JY
    Plant Sci; 2013 Dec; 213():46-54. PubMed ID: 24157207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PredAlgo: a new subcellular localization prediction tool dedicated to green algae.
    Tardif M; Atteia A; Specht M; Cogne G; Rolland N; Brugière S; Hippler M; Ferro M; Bruley C; Peltier G; Vallon O; Cournac L
    Mol Biol Evol; 2012 Dec; 29(12):3625-39. PubMed ID: 22826458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How can organellar protein N-terminal sequences be dual targeting signals? In silico analysis and mutagenesis approach.
    Pujol C; Maréchal-Drouard L; Duchêne AM
    J Mol Biol; 2007 Jun; 369(2):356-67. PubMed ID: 17433818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved prediction of chloroplast proteins reveals diversities and commonalities in the chloroplast proteomes of Arabidopsis and rice.
    Richly E; Leister D
    Gene; 2004 Mar; 329():11-6. PubMed ID: 15033524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 96.