BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 10891418)

  • 21. Location of intrachain disulfide bonds in the VP5* and VP8* trypsin cleavage fragments of the rhesus rotavirus spike protein VP4.
    Patton JT; Hua J; Mansell EA
    J Virol; 1993 Aug; 67(8):4848-55. PubMed ID: 8392619
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biochemical characterization of rotavirus receptors in MA104 cells.
    Guerrero CA; Zárate S; Corkidi G; López S; Arias CF
    J Virol; 2000 Oct; 74(20):9362-71. PubMed ID: 11000204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of Sialic Acid-Independent Simian Rotavirus Mutants in Viral Infection and Pathogenesis.
    Yamasaki M; Kanai Y; Wakamura Y; Kotaki T; Minami S; Nouda R; Nurdin JA; Kobayashi T
    J Virol; 2023 Jan; 97(1):e0139722. PubMed ID: 36602365
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-resolution molecular and antigen structure of the VP8* core of a sialic acid-independent human rotavirus strain.
    Monnier N; Higo-Moriguchi K; Sun ZY; Prasad BV; Taniguchi K; Dormitzer PR
    J Virol; 2006 Feb; 80(3):1513-23. PubMed ID: 16415027
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional and structural analysis of the sialic acid-binding domain of rotaviruses.
    Isa P; López S; Segovia L; Arias CF
    J Virol; 1997 Sep; 71(9):6749-56. PubMed ID: 9261399
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human Group C Rotavirus VP8*s Recognize Type A Histo-Blood Group Antigens as Ligands.
    Sun X; Wang L; Qi J; Li D; Wang M; Cong X; Peng R; Chai W; Zhang Q; Wang H; Wen H; Gao GF; Tan M; Duan Z
    J Virol; 2018 Jun; 92(11):. PubMed ID: 29593033
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrin alpha(v)beta(3) mediates rotavirus cell entry.
    Guerrero CA; Méndez E; Zárate S; Isa P; López S; Arias CF
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14644-9. PubMed ID: 11114176
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular biology of rotavirus cell entry.
    Arias CF; Isa P; Guerrero CA; Méndez E; Zárate S; López T; Espinosa R; Romero P; López S
    Arch Med Res; 2002; 33(4):356-61. PubMed ID: 12234525
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Attachment and infection to MA104 cells of avian rotaviruses require the presence of sialic acid on the cell surface.
    Sugiyama M; Goto K; Uemukai H; Mori Y; Ito N; Minamoto N
    J Vet Med Sci; 2004 Apr; 66(4):461-3. PubMed ID: 15133281
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human and most animal rotavirus strains do not require the presence of sialic acid on the cell surface for efficient infectivity.
    Ciarlet M; Estes MK
    J Gen Virol; 1999 Apr; 80 ( Pt 4)():943-948. PubMed ID: 10211964
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential infection of polarized epithelial cell lines by sialic acid-dependent and sialic acid-independent rotavirus strains.
    Ciarlet M; Crawford SE; Estes MK
    J Virol; 2001 Dec; 75(23):11834-50. PubMed ID: 11689665
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic mapping indicates that VP4 is the rotavirus cell attachment protein in vitro and in vivo.
    Ludert JE; Feng N; Yu JH; Broome RL; Hoshino Y; Greenberg HB
    J Virol; 1996 Jan; 70(1):487-93. PubMed ID: 8523562
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site.
    Dormitzer PR; Sun ZY; Wagner G; Harrison SC
    EMBO J; 2002 Mar; 21(5):885-97. PubMed ID: 11867517
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antibodies to rotavirus outer capsid glycoprotein VP7 neutralize infectivity by inhibiting virion decapsidation.
    Ludert JE; Ruiz MC; Hidalgo C; Liprandi F
    J Virol; 2002 Jul; 76(13):6643-51. PubMed ID: 12050377
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The use of a quantitative fusion assay to evaluate HN-receptor interaction for human parainfluenza virus type 3.
    Levin Perlman S; Jordan M; Brossmer R; Greengard O; Moscona A
    Virology; 1999 Dec; 265(1):57-65. PubMed ID: 10603317
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heat shock cognate protein 70 is involved in rotavirus cell entry.
    Guerrero CA; Bouyssounade D; Zárate S; Isa P; López T; Espinosa R; Romero P; Méndez E; López S; Arias CF
    J Virol; 2002 Apr; 76(8):4096-102. PubMed ID: 11907249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Human milk contains novel glycans that are potential decoy receptors for neonatal rotaviruses.
    Yu Y; Lasanajak Y; Song X; Hu L; Ramani S; Mickum ML; Ashline DJ; Prasad BV; Estes MK; Reinhold VN; Cummings RD; Smith DF
    Mol Cell Proteomics; 2014 Nov; 13(11):2944-60. PubMed ID: 25048705
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sialic acid dependence and independence of group A rotaviruses.
    Kuhlenschmidt TB; Hanafin WP; Gelberg HB; Kuhlenschmidt MS
    Adv Exp Med Biol; 1999; 473():309-17. PubMed ID: 10659372
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbohydrate recognition by rotaviruses.
    Yu X; Blanchard H
    J Struct Funct Genomics; 2014 Sep; 15(3):101-6. PubMed ID: 24248423
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Initial interaction of rotavirus strains with N-acetylneuraminic (sialic) acid residues on the cell surface correlates with VP4 genotype, not species of origin.
    Ciarlet M; Ludert JE; Iturriza-Gómara M; Liprandi F; Gray JJ; Desselberger U; Estes MK
    J Virol; 2002 Apr; 76(8):4087-95. PubMed ID: 11907248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.