These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 10892250)
1. Reconstructing bifurcation diagrams of dynamical systems using measured time series. Bagarinao E; Pakdaman K; Nomura T; Sato S Methods Inf Med; 2000 Jun; 39(2):146-9. PubMed ID: 10892250 [TBL] [Abstract][Full Text] [Related]
2. Reconstructing bifurcation diagrams from noisy time series using nonlinear autoregressive models. Bagarinao E; Pakdaman K; Nomura T; Sato S Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jul; 60(1):1073-6. PubMed ID: 11969857 [TBL] [Abstract][Full Text] [Related]
3. Reconstructing bifurcation diagrams only from time-series data generated by electronic circuits in discrete-time dynamical systems. Itoh Y; Uenohara S; Adachi M; Morie T; Aihara K Chaos; 2020 Jan; 30(1):013128. PubMed ID: 32013489 [TBL] [Abstract][Full Text] [Related]
4. Control of nonaffine nonlinear discrete-time systems using reinforcement-learning-based linearly parameterized neural networks. Yang Q; Vance JB; Jagannathan S IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):994-1001. PubMed ID: 18632390 [TBL] [Abstract][Full Text] [Related]
5. Bursting near Bautin bifurcation in a neural network with delay coupling. Song Z; Xu J Int J Neural Syst; 2009 Oct; 19(5):359-73. PubMed ID: 19885964 [TBL] [Abstract][Full Text] [Related]
6. The Hindmarsh-Rose neuron model: bifurcation analysis and piecewise-linear approximations. Storace M; Linaro D; de Lange E Chaos; 2008 Sep; 18(3):033128. PubMed ID: 19045466 [TBL] [Abstract][Full Text] [Related]
7. Modeling global vector fields of chaotic systems from noisy time series with the aid of structure-selection techniques. Xu D; Lu F Chaos; 2006 Dec; 16(4):043109. PubMed ID: 17199387 [TBL] [Abstract][Full Text] [Related]
8. Controlling the onset of Hopf bifurcation in the Hodgkin-Huxley model. Xie Y; Chen L; Kang YM; Aihara K Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061921. PubMed ID: 18643314 [TBL] [Abstract][Full Text] [Related]
10. Discrete-time reduced order neural observers for uncertain nonlinear systems. Alanis AY; Sanchez EN; Ricalde LJ Int J Neural Syst; 2010 Feb; 20(1):29-38. PubMed ID: 20180251 [TBL] [Abstract][Full Text] [Related]
11. A new class of wavelet networks for nonlinear system identification. Billings SA; Wei HL IEEE Trans Neural Netw; 2005 Jul; 16(4):862-74. PubMed ID: 16121728 [TBL] [Abstract][Full Text] [Related]
12. Adaptive-Fourier-neural-network-based control for a class of uncertain nonlinear systems. Zuo W; Cai L IEEE Trans Neural Netw; 2008 Oct; 19(10):1689-701. PubMed ID: 18842474 [TBL] [Abstract][Full Text] [Related]
13. Discrete-time adaptive backstepping nonlinear control via high-order neural networks. Alanis AY; Sanchez EN; Loukianov AG IEEE Trans Neural Netw; 2007 Jul; 18(4):1185-95. PubMed ID: 17668670 [TBL] [Abstract][Full Text] [Related]
14. Detecting chaotic structures in noisy pulse trains based on interspike interval reconstruction. Kanamaru T; Sekine M Biol Cybern; 2005 May; 92(5):333-8. PubMed ID: 15868126 [TBL] [Abstract][Full Text] [Related]
15. Neural network approach to continuous-time direct adaptive optimal control for partially unknown nonlinear systems. Vrabie D; Lewis F Neural Netw; 2009 Apr; 22(3):237-46. PubMed ID: 19362449 [TBL] [Abstract][Full Text] [Related]
16. Model-based detector and extraction of weak signal frequencies from chaotic data. Zhou C; Cai T; Heng Lai C; Wang X; Lai YC Chaos; 2008 Mar; 18(1):013104. PubMed ID: 18377055 [TBL] [Abstract][Full Text] [Related]
17. Bifurcation of synchronous oscillations into torus in a system of two reciprocally inhibitory silicon neurons: experimental observation and modeling. Bondarenko VE; Cymbalyuk GS; Patel G; Deweerth SP; Calabrese RL Chaos; 2004 Dec; 14(4):995-1003. PubMed ID: 15568913 [TBL] [Abstract][Full Text] [Related]
18. Filtering out deep brain stimulation artifacts using a nonlinear oscillatory model. Aksenova TI; Nowicki DV; Benabid AL Neural Comput; 2009 Sep; 21(9):2648-66. PubMed ID: 19323638 [TBL] [Abstract][Full Text] [Related]
19. Cascade process modeling with mechanism-based hierarchical neural networks. Cong Q; Yu W; Chai T Int J Neural Syst; 2010 Feb; 20(1):1-11. PubMed ID: 20180249 [TBL] [Abstract][Full Text] [Related]
20. A method of estimating the noise level in a chaotic time series. Jayawardena AW; Xu P; Li WK Chaos; 2008 Jun; 18(2):023115. PubMed ID: 18601482 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]