BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 10892646)

  • 21. Kinetic pathway of dTTP hydrolysis by hexameric T7 helicase-primase in the absence of DNA.
    Jeong YJ; Kim DE; Patel SS
    J Biol Chem; 2002 Nov; 277(46):43778-84. PubMed ID: 12226105
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic structural insights into the molecular mechanism of DNA unwinding by the bacteriophage T7 helicase.
    Ma JB; Chen Z; Xu CH; Huang XY; Jia Q; Zou ZY; Mi CY; Ma DF; Lu Y; Zhang HD; Li M
    Nucleic Acids Res; 2020 Apr; 48(6):3156-3164. PubMed ID: 32009150
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Different mechanisms for translocation by monomeric and hexameric helicases.
    Gao Y; Yang W
    Curr Opin Struct Biol; 2020 Apr; 61():25-32. PubMed ID: 31783299
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Residues in the central beta-hairpin of the DNA helicase of bacteriophage T7 are important in DNA unwinding.
    Satapathy AK; Kochaniak AB; Mukherjee S; Crampton DJ; van Oijen A; Richardson CC
    Proc Natl Acad Sci U S A; 2010 Apr; 107(15):6782-7. PubMed ID: 20351255
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ATP hydrolysis stimulates binding and release of single stranded DNA from alternating subunits of the dimeric E. coli Rep helicase: implications for ATP-driven helicase translocation.
    Bjornson KP; Wong I; Lohman TM
    J Mol Biol; 1996 Nov; 263(3):411-22. PubMed ID: 8918597
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DNA binding in the central channel of bacteriophage T7 helicase-primase is a multistep process. Nucleotide hydrolysis is not required.
    Picha KM; Ahnert P; Patel SS
    Biochemistry; 2000 May; 39(21):6401-9. PubMed ID: 10828954
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bacteriophage T7 DNA helicase binds dTTP, forms hexamers, and binds DNA in the absence of Mg2+. The presence of dTTP is sufficient for hexamer formation and DNA binding.
    Picha KM; Patel SS
    J Biol Chem; 1998 Oct; 273(42):27315-9. PubMed ID: 9765257
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conformational dynamics of DnaB helicase upon DNA and nucleotide binding: analysis by intrinsic tryptophan fluorescence quenching.
    Flowers S; Biswas EE; Biswas SB
    Biochemistry; 2003 Feb; 42(7):1910-21. PubMed ID: 12590577
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A hexameric helicase encircles one DNA strand and excludes the other during DNA unwinding.
    Hacker KJ; Johnson KA
    Biochemistry; 1997 Nov; 36(46):14080-7. PubMed ID: 9369480
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Papillomavirus E1 helicase assembly maintains an asymmetric state in the absence of DNA and nucleotide cofactors.
    Sanders CM; Kovalevskiy OV; Sizov D; Lebedev AA; Isupov MN; Antson AA
    Nucleic Acids Res; 2007; 35(19):6451-7. PubMed ID: 17881379
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A two-site kinetic mechanism for ATP binding and hydrolysis by E. coli Rep helicase dimer bound to a single-stranded oligodeoxynucleotide.
    Hsieh J; Moore KJ; Lohman TM
    J Mol Biol; 1999 Apr; 288(2):255-74. PubMed ID: 10329141
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism.
    Velankar SS; Soultanas P; Dillingham MS; Subramanya HS; Wigley DB
    Cell; 1999 Apr; 97(1):75-84. PubMed ID: 10199404
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of DnaB helicase of Escherichia coli: structural domains involved in ATP hydrolysis, DNA binding, and oligomerization.
    Biswas EE; Biswas SB
    Biochemistry; 1999 Aug; 38(34):10919-28. PubMed ID: 10460147
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Binding of Escherichia coli primary replicative helicase DnaB protein to single-stranded DNA. Long-range allosteric conformational changes within the protein hexamer.
    Jezewska MJ; Kim US; Bujalowski W
    Biochemistry; 1996 Feb; 35(7):2129-45. PubMed ID: 8652555
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The primase active site is on the outside of the hexameric bacteriophage T7 gene 4 helicase-primase ring.
    VanLoock MS; Chen YJ; Yu X; Patel SS; Egelman EH
    J Mol Biol; 2001 Aug; 311(5):951-6. PubMed ID: 11531331
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modular architecture of the hexameric human mitochondrial DNA helicase.
    Ziebarth TD; Farr CL; Kaguni LS
    J Mol Biol; 2007 Apr; 367(5):1382-91. PubMed ID: 17324440
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oligomeric states of bacteriophage T7 gene 4 primase/helicase.
    Crampton DJ; Ohi M; Qimron U; Walz T; Richardson CC
    J Mol Biol; 2006 Jul; 360(3):667-77. PubMed ID: 16777142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic mechanism of nucleotide cofactor binding to Escherichia coli replicative helicase DnaB protein. stopped-flow kinetic studies using fluorescent, ribose-, and base-modified nucleotide analogues.
    Bujalowski W; Jezewska MJ
    Biochemistry; 2000 Feb; 39(8):2106-22. PubMed ID: 10684661
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of DNA translocation in a replicative hexameric helicase.
    Enemark EJ; Joshua-Tor L
    Nature; 2006 Jul; 442(7100):270-5. PubMed ID: 16855583
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure of DNA helicase RepA in complex with sulfate at 1.95 A resolution implicates structural changes to an "open" form.
    Xu H; Sträter N; Schröder W; Böttcher C; Ludwig K; Saenger W
    Acta Crystallogr D Biol Crystallogr; 2003 May; 59(Pt 5):815-22. PubMed ID: 12777796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.