BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 10892799)

  • 1. Stereoselectivity of Pseudomonas cepacia lipase toward secondary alcohols: a quantitative model.
    Schulz T; Pleiss J; Schmid RD
    Protein Sci; 2000 Jun; 9(6):1053-62. PubMed ID: 10892799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined X-ray diffraction and QM/MM study of the Burkholderia cepacia lipase-catalyzed secondary alcohol esterification.
    Luić M; Stefanić Z; Ceilinger I; Hodoscek M; Janezic D; Lenac T; Asler IL; Sepac D; Tomić S
    J Phys Chem B; 2008 Apr; 112(16):4876-83. PubMed ID: 18386861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of absolute configuration of secondary alcohols using lipase-catalyzed kinetic resolutions.
    Jing Q; Kazlauskas RJ
    Chirality; 2008 May; 20(5):724-35. PubMed ID: 18278808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A structural basis for enantioselective inhibition of Candida rugosa lipase by long-chain aliphatic alcohols.
    Holmquist M; Haeffner F; Norin T; Hult K
    Protein Sci; 1996 Jan; 5(1):83-8. PubMed ID: 8771199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mirror-image packing in enantiomer discrimination molecular basis for the enantioselectivity of B.cepacia lipase toward 2-methyl-3-phenyl-1-propanol.
    Mezzetti A; Schrag JD; Cheong CS; Kazlauskas RJ
    Chem Biol; 2005 Apr; 12(4):427-37. PubMed ID: 15850979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physicochemical stereodescriptors of atomic chiral centers.
    Zhang QY; Aires-de-Sousa J
    J Chem Inf Model; 2006; 46(6):2278-87. PubMed ID: 17125170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantitative model for predicting enzyme enantioselectivity: application to Burkholderia cepacia lipase and 3-(aryloxy)-1,2-propanediol derivatives.
    Tomić S; Kojić-Prodić B
    J Mol Graph Model; 2002 Dec; 21(3):241-52. PubMed ID: 12463642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A structure-controlled investigation of lipase enantioselectivity by a path-planning approach.
    Guieysse D; Cortés J; Puech-Guenot S; Barbe S; Lafaquière V; Monsan P; Siméon T; André I; Remaud-Siméon M
    Chembiochem; 2008 May; 9(8):1308-17. PubMed ID: 18418817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical resolution of (+/-)-1-aryl-1-alkanols using enantioselective transesterification by lipases.
    Negi S; Umetsu K; Nishijo Y; Kano K; Nakamura K
    Enantiomer; 2000; 5(1):63-70. PubMed ID: 10763870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic-surfactant-coated Burkholderia cepacia lipase as a highly active and enantioselective catalyst for the dynamic kinetic resolution of secondary alcohols.
    Kim H; Choi YK; Lee J; Lee E; Park J; Kim MJ
    Angew Chem Int Ed Engl; 2011 Nov; 50(46):10944-8. PubMed ID: 21954139
    [No Abstract]   [Full Text] [Related]  

  • 11. Kinetic and dynamic kinetic resolution of secondary alcohols with ionic-surfactant-coated Burkholderia cepacia lipase: substrate scope and enantioselectivity.
    Kim C; Lee J; Cho J; Oh Y; Choi YK; Choi E; Park J; Kim MJ
    J Org Chem; 2013 Mar; 78(6):2571-8. PubMed ID: 23406287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic resolution of 4-chloro-2-(1-hydroxyalkyl)pyridines using Pseudomonas cepacia lipase.
    Busto E; Gotor-Fernández V; Gotor V
    Nat Protoc; 2006; 1(4):2061-7. PubMed ID: 17487195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resolution of 2-nitroalcohols by Burkholderia cepacia lipase-catalyzed enantioselective acylation.
    Li N; Hu SB; Feng GY
    Biotechnol Lett; 2012 Jan; 34(1):153-8. PubMed ID: 21972142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of enzyme activity and enantioselectivity by cyclopentyl methyl ether in the transesterification catalyzed by Pseudomonas cepacia lipase co-lyophilized with cyclodextrins.
    Mine Y; Zhang L; Fukunaga K; Sugimura Y
    Biotechnol Lett; 2005 Mar; 27(6):383-8. PubMed ID: 15834802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remote interactions explain the unusual regioselectivity of lipase from Pseudomonas cepacia toward the secondary hydroxyl of 2'-deoxynucleosides.
    Lavandera I; Fernández S; Magdalena J; Ferrero M; Grewal H; Savile CK; Kazlauskas RJ; Gotor V
    Chembiochem; 2006 Apr; 7(4):693-8. PubMed ID: 16491501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of enantioselectivity of lipase catalyzed kinetic resolution using umbrella sampling.
    Mathpati AC; Bhanage BM
    J Biotechnol; 2018 Oct; 283():70-80. PubMed ID: 30031094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Miniemulsion as efficient system for enzymatic synthesis of acid alkyl esters.
    de Barros DP; Fonseca LP; Cabral JM; Aschenbrenner EM; Weiss CK; Landfester K
    Biotechnol Bioeng; 2010 Jul; 106(4):507-15. PubMed ID: 20503297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Basis for Enantioselectivity of Lipase from Pseudomonas cepacia toward Primary Alcohols. Modeling, Kinetics, and Chemical Modification of Tyr29 to Increase or Decrease Enantioselectivity.
    Tuomi WV; Kazlauskas RJ
    J Org Chem; 1999 Apr; 64(8):2638-2647. PubMed ID: 11674331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational control of enantioselectivity of lipase by site-directed mutagenesis based on the mechanism.
    Ema T; Fujii T; Ozaki M; Korenaga T; Sakai T
    Chem Commun (Camb); 2005 Oct; (37):4650-1. PubMed ID: 16175280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer simulations of enantioselective ester hydrolyses catalyzed by Pseudomonas cepacia lipase.
    Tafi A; van Almsick A; Corelli F; Crusco M; Laumen KE; Schneider MP; Botta M
    J Org Chem; 2000 Jun; 65(12):3659-65. PubMed ID: 10864749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.