These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 10892800)

  • 1. Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors.
    Harel M; Kryger G; Rosenberry TL; Mallender WD; Lewis T; Fletcher RJ; Guss JM; Silman I; Sussman JL
    Protein Sci; 2000 Jun; 9(6):1063-72. PubMed ID: 10892800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The complex of a bivalent derivative of galanthamine with torpedo acetylcholinesterase displays drastic deformation of the active-site gorge: implications for structure-based drug design.
    Greenblatt HM; Guillou C; Guénard D; Argaman A; Botti S; Badet B; Thal C; Silman I; Sussman JL
    J Am Chem Soc; 2004 Dec; 126(47):15405-11. PubMed ID: 15563167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of an acetylcholinesterase-fasciculin complex: interaction of a three-fingered toxin from snake venom with its target.
    Harel M; Kleywegt GJ; Ravelli RB; Silman I; Sussman JL
    Structure; 1995 Dec; 3(12):1355-66. PubMed ID: 8747462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetylcholinesterase complexed with bivalent ligands related to huperzine a: experimental evidence for species-dependent protein-ligand complementarity.
    Wong DM; Greenblatt HM; Dvir H; Carlier PR; Han YF; Pang YP; Silman I; Sussman JL
    J Am Chem Soc; 2003 Jan; 125(2):363-73. PubMed ID: 12517147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active-site gorge and buried water molecules in crystal structures of acetylcholinesterase from Torpedo californica.
    Koellner G; Kryger G; Millard CB; Silman I; Sussman JL; Steiner T
    J Mol Biol; 2000 Feb; 296(2):713-35. PubMed ID: 10669619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homology built model of acetylcholinesterase from Drosophila melanogaster.
    Stojan J
    J Enzyme Inhib; 1999; 14(3):193-201. PubMed ID: 10445043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complexes of alkylene-linked tacrine dimers with Torpedo californica acetylcholinesterase: Binding of Bis5-tacrine produces a dramatic rearrangement in the active-site gorge.
    Rydberg EH; Brumshtein B; Greenblatt HM; Wong DM; Shaya D; Williams LD; Carlier PR; Pang YP; Silman I; Sussman JL
    J Med Chem; 2006 Sep; 49(18):5491-500. PubMed ID: 16942022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The 3D structure of the anticancer prodrug CPT-11 with Torpedo californica acetylcholinesterase rationalizes its inhibitory action on AChE and its hydrolysis by butyrylcholinesterase and carboxylesterase.
    Harel M; Hyatt JL; Brumshtein B; Morton CL; Wadkins RM; Silman I; Sussman JL; Potter PM
    Chem Biol Interact; 2005 Dec; 157-158():153-7. PubMed ID: 16289500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of a complex of the potent and specific inhibitor BW284C51 with Torpedo californica acetylcholinesterase.
    Felder CE; Harel M; Silman I; Sussman JL
    Acta Crystallogr D Biol Crystallogr; 2002 Oct; 58(Pt 10 Pt 2):1765-71. PubMed ID: 12351819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Second Look at the Crystal Structures of
    Nachon F; Rosenberry TL; Silman I; Sussman JL
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32155891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures of recombinant native and E202Q mutant human acetylcholinesterase complexed with the snake-venom toxin fasciculin-II.
    Kryger G; Harel M; Giles K; Toker L; Velan B; Lazar A; Kronman C; Barak D; Ariel N; Shafferman A; Silman I; Sussman JL
    Acta Crystallogr D Biol Crystallogr; 2000 Nov; 56(Pt 11):1385-94. PubMed ID: 11053835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 'aromatic patch' of three proximal residues in the human acetylcholinesterase active centre allows for versatile interaction modes with inhibitors.
    Ariel N; Ordentlich A; Barak D; Bino T; Velan B; Shafferman A
    Biochem J; 1998 Oct; 335 ( Pt 1)(Pt 1):95-102. PubMed ID: 9742217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of snake venom acetylcholinesterase in complex with inhibitory antibody fragment Fab410 bound at the peripheral site: evidence for open and closed states of a back door channel.
    Bourne Y; Renault L; Marchot P
    J Biol Chem; 2015 Jan; 290(3):1522-35. PubMed ID: 25411244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of Drosophila melanogaster acetylcholinesterase by high concentrations of substrate.
    Stojan J; Brochier L; Alies C; Colletier JP; Fournier D
    Eur J Biochem; 2004 Apr; 271(7):1364-71. PubMed ID: 15030487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An expedient synthesis, acetylcholinesterase inhibitory activity, and molecular modeling study of highly functionalized hexahydro-1,6-naphthyridines.
    Almansour AI; Kumar RS; Arumugam N; Basiri A; Kia Y; Ali MA
    Biomed Res Int; 2015; 2015():965987. PubMed ID: 25710037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A putative kinetic model for substrate metabolisation by Drosophila acetylcholinesterase.
    Stojan J; Marcel V; Estrada-Mondaca S; Klaebe A; Masson P; Fournier D
    FEBS Lett; 1998 Nov; 440(1-2):85-8. PubMed ID: 9862431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on a new series of THA analogues: effects of the aromatic residues that line the gorge of AChE.
    Pomponi M; Marta M; Colella A; Sacchi S; Patamia M; Gatta F; Capone F; Oliverio A; Pavone F
    FEBS Lett; 1997 Jun; 409(2):155-60. PubMed ID: 9202137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, synthesis and biological evaluation of organophosphorous-homodimers as dual binding site acetylcholinesterase inhibitors.
    Xie R; Zhao Q; Zhang T; Fang J; Mei X; Ning J; Tang Y
    Bioorg Med Chem; 2013 Jan; 21(1):278-82. PubMed ID: 23200223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular docking study on the "back door" hypothesis for product clearance in acetylcholinesterase.
    Alisaraie L; Fels G
    J Mol Model; 2006 Feb; 12(3):348-54. PubMed ID: 16341717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetylcholinesterase engineering for detection of insecticide residues.
    Boublik Y; Saint-Aguet P; Lougarre A; Arnaud M; Villatte F; Estrada-Mondaca S; Fournier D
    Protein Eng; 2002 Jan; 15(1):43-50. PubMed ID: 11842237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.