BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 10893228)

  • 21. Structural organization and interactions of transmembrane domains in tetraspanin proteins.
    Kovalenko OV; Metcalf DG; DeGrado WF; Hemler ME
    BMC Struct Biol; 2005 Jun; 5():11. PubMed ID: 15985154
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two translocating hydrophilic segments of a nascent chain span the ER membrane during multispanning protein topogenesis.
    Kida Y; Morimoto F; Sakaguchi M
    J Cell Biol; 2007 Dec; 179(7):1441-52. PubMed ID: 18166653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transmembrane orientation and topogenesis of the third and fourth membrane-spanning regions of human P-glycoprotein (MDR1).
    Skach WR; Lingappa VR
    Cancer Res; 1994 Jun; 54(12):3202-9. PubMed ID: 7911395
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of sequence determinants that direct different intracellular folding pathways for aquaporin-1 and aquaporin-4.
    Foster W; Helm A; Turnbull I; Gulati H; Yang B; Verkman AS; Skach WR
    J Biol Chem; 2000 Nov; 275(44):34157-65. PubMed ID: 10944517
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression and biophysical analysis of two double-transmembrane domain-containing fragments from a yeast G protein-coupled receptor.
    Cohen LS; Arshava B; Estephan R; Englander J; Kim H; Hauser M; Zerbe O; Ceruso M; Becker JM; Naider F
    Biopolymers; 2008; 90(2):117-30. PubMed ID: 18260136
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence that the TM1-TM2 loop contributes to the rho1 GABA receptor pore.
    Filippova N; Wotring VE; Weiss DS
    J Biol Chem; 2004 May; 279(20):20906-14. PubMed ID: 15007065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Membrane translocation of lumenal domains of membrane proteins powered by downstream transmembrane sequences.
    Yabuki T; Morimoto F; Kida Y; Sakaguchi M
    Mol Biol Cell; 2013 Oct; 24(19):3123-32. PubMed ID: 23924896
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Properties of transmembrane helix TM1 of the DcuS sensor kinase of
    Stopp M; Steinmetz PA; Unden G
    Biol Chem; 2021 Sep; 402(10):1239-1246. PubMed ID: 34355547
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Topogenesis of cystic fibrosis transmembrane conductance regulator (CFTR): regulation by the amino terminal transmembrane sequences.
    Chen M; Zhang JT
    Biochemistry; 1999 Apr; 38(17):5471-7. PubMed ID: 10220334
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The mitochondrial intermembrane loop region of rat carnitine palmitoyltransferase 1A is a major determinant of its malonyl-CoA sensitivity.
    Borthwick K; Jackson VN; Price NT; Zammit VA
    J Biol Chem; 2006 Nov; 281(44):32946-52. PubMed ID: 16908527
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Positional editing of transmembrane domains during ion channel assembly.
    Öjemalm K; Watson HR; Roboti P; Cross BC; Warwicker J; von Heijne G; High S
    J Cell Sci; 2013 Jan; 126(Pt 2):464-72. PubMed ID: 23230148
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Topogenesis of NHE1: direct insertion of the membrane loop and sequestration of cryptic glycosylation and processing sites just after TM9.
    Sato Y; Ariyoshi N; Mihara K; Sakaguchi M
    Biochem Biophys Res Commun; 2004 Nov; 324(1):281-7. PubMed ID: 15465015
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glycosylation can influence topogenesis of membrane proteins and reveals dynamic reorientation of nascent polypeptides within the translocon.
    Goder V; Bieri C; Spiess M
    J Cell Biol; 1999 Oct; 147(2):257-66. PubMed ID: 10525533
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NMR Investigation of Structures of G-protein Coupled Receptor Folding Intermediates.
    Poms M; Ansorge P; Martinez-Gil L; Jurt S; Gottstein D; Fracchiolla KE; Cohen LS; Güntert P; Mingarro I; Naider F; Zerbe O
    J Biol Chem; 2016 Dec; 291(53):27170-27186. PubMed ID: 27864365
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Autonomous and heteronomous positioning of transmembrane segments in multispanning membrane protein.
    Sakaguchi M
    Biochem Biophys Res Commun; 2002 Aug; 296(1):1-4. PubMed ID: 12147217
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transmembrane helix-helix interactions and accessibility of H2DIDS on labelled band 3, the erythrocyte anion exchange protein.
    Landolt-Marticorena C; Casey JR; Reithmeier RA
    Mol Membr Biol; 1995; 12(2):173-82. PubMed ID: 7795708
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Secondary structure and gating rearrangements of transmembrane segments in rat P2X4 receptor channels.
    Silberberg SD; Chang TH; Swartz KJ
    J Gen Physiol; 2005 Apr; 125(4):347-59. PubMed ID: 15795310
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutational analysis of a transmembrane segment in a bacterial chemoreceptor.
    Baumgartner JW; Hazelbauer GL
    J Bacteriol; 1996 Aug; 178(15):4651-60. PubMed ID: 8755897
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural studies on the effects of the deletion in the red cell anion exchanger (band 3, AE1) associated with South East Asian ovalocytosis.
    Chambers EJ; Bloomberg GB; Ring SM; Tanner MJ
    J Mol Biol; 1999 Jan; 285(3):1289-307. PubMed ID: 9887277
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Topogenesis of two transmembrane type K+ channels, Kir 2.1 and KcsA.
    Umigai N; Sato Y; Mizutani A; Utsumi T; Sakaguchi M; Uozumi N
    J Biol Chem; 2003 Oct; 278(41):40373-84. PubMed ID: 12885768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.