These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 10893332)

  • 1. Aldosterone- and testosterone-mediated intracellular calcium response in skeletal muscle cell cultures.
    Estrada M; Liberona JL; Miranda M; Jaimovich E
    Am J Physiol Endocrinol Metab; 2000 Jul; 279(1):E132-9. PubMed ID: 10893332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testosterone stimulates intracellular calcium release and mitogen-activated protein kinases via a G protein-coupled receptor in skeletal muscle cells.
    Estrada M; Espinosa A; Müller M; Jaimovich E
    Endocrinology; 2003 Aug; 144(8):3586-97. PubMed ID: 12865341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IP(3) receptors, IP(3) transients, and nucleus-associated Ca(2+) signals in cultured skeletal muscle.
    Jaimovich E; Reyes R; Liberona JL; Powell JA
    Am J Physiol Cell Physiol; 2000 May; 278(5):C998-C1010. PubMed ID: 10794674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear inositol 1,4,5-trisphosphate receptors regulate local Ca2+ transients and modulate cAMP response element binding protein phosphorylation.
    Cárdenas C; Liberona JL; Molgó J; Colasante C; Mignery GA; Jaimovich E
    J Cell Sci; 2005 Jul; 118(Pt 14):3131-40. PubMed ID: 16014380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capacitative calcium entry in testosterone-induced intracellular calcium oscillations in myotubes.
    Estrada M; Espinosa A; Gibson CJ; Uhlen P; Jaimovich E
    J Endocrinol; 2005 Feb; 184(2):371-9. PubMed ID: 15684345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Testosterone induces an intracellular calcium increase by a nongenomic mechanism in cultured rat cardiac myocytes.
    Vicencio JM; Ibarra C; Estrada M; Chiong M; Soto D; Parra V; Diaz-Araya G; Jaimovich E; Lavandero S
    Endocrinology; 2006 Mar; 147(3):1386-95. PubMed ID: 16339199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nongenomic effects of aldosterone on intracellular calcium in porcine endothelial cells.
    Schneider M; Ulsenheimer A; Christ M; Wehling M
    Am J Physiol; 1997 Apr; 272(4 Pt 1):E616-20. PubMed ID: 9142882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nongenomic effects of aldosterone on Ca2+ in M-1 cortical collecting duct cells.
    Harvey BJ; Higgins M
    Kidney Int; 2000 Apr; 57(4):1395-403. PubMed ID: 10760073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Possible link of different slow calcium signals generated by membrane potential and hormones to differential gene expression in cultured muscle cells.
    Jaimovich E; Espinosa A
    Biol Res; 2004; 37(4):625-33. PubMed ID: 15709691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IGF-I and insulin induce different intracellular calcium signals in skeletal muscle cells.
    Espinosa A; Estrada M; Jaimovich E
    J Endocrinol; 2004 Aug; 182(2):339-52. PubMed ID: 15283694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional muscarinic receptors in cultured skeletal muscle.
    Reyes R; Jaimovich E
    Arch Biochem Biophys; 1996 Jul; 331(1):41-7. PubMed ID: 8660681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slow calcium signals after tetanic electrical stimulation in skeletal myotubes.
    Eltit JM; Hidalgo J; Liberona JL; Jaimovich E
    Biophys J; 2004 May; 86(5):3042-51. PubMed ID: 15111418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inositol-1,4,5-trisphosphate-dependent Ca(2+) signalling in cat atrial excitation-contraction coupling and arrhythmias.
    Zima AV; Blatter LA
    J Physiol; 2004 Mar; 555(Pt 3):607-15. PubMed ID: 14754996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amplitude modulation of nuclear Ca2+ signals in human skeletal myotubes: a possible role for nuclear Ca2+ buffering.
    Koopman WJ; Willems PH; Oosterhof A; van Kuppevelt TH; Gielen SC
    Cell Calcium; 2005 Aug; 38(2):141-52. PubMed ID: 16054687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of the PKC inhibitor calphostin C and the PKC agonist phorbol 12-myristate 13-acetate on regulation of cytosolic Ca(2+) in mammalian skeletal muscle cells.
    Han R; Bakker AJ
    Toxicol Appl Pharmacol; 2006 May; 212(3):247-55. PubMed ID: 16150473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xestospongin B, a competitive inhibitor of IP3-mediated Ca2+ signalling in cultured rat myotubes, isolated myonuclei, and neuroblastoma (NG108-15) cells.
    Jaimovich E; Mattei C; Liberona JL; Cardenas C; Estrada M; Barbier J; Debitus C; Laurent D; Molgó J
    FEBS Lett; 2005 Apr; 579(10):2051-7. PubMed ID: 15811317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of muscarinic cationic current in myocytes from guinea-pig ileum by intracellular Ca2+ release: a central role of inositol 1,4,5-trisphosphate receptors.
    Gordienko DV; Zholos AV
    Cell Calcium; 2004 Nov; 36(5):367-86. PubMed ID: 15451621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of calcium release due to inositol trisphosphate receptors in skeletal muscle.
    Casas M; Altamirano F; Jaimovich E
    Methods Mol Biol; 2012; 798():383-93. PubMed ID: 22130849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coexistence of functional IP(3) and ryanodine receptors in vagal sensory neurons and their activation by ATP.
    Hoesch RE; Yienger K; Weinreich D; Kao JP
    J Neurophysiol; 2002 Sep; 88(3):1212-9. PubMed ID: 12205142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inositol (1,4,5)trisphosphate metabolism and enhanced calcium mobilization in airway smooth muscle of hyperresponsive rats.
    Tao FC; Tolloczko B; Mitchell CA; Powell WS; Martin JG
    Am J Respir Cell Mol Biol; 2000 Oct; 23(4):514-20. PubMed ID: 11017917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.