These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 10893523)

  • 1. Estimation of pressure gradients in pulsatile flow from magnetic resonance acceleration measurements.
    Tasu JP; Mousseaux E; Delouche A; Oddou C; Jolivet O; Bittoun J
    Magn Reson Med; 2000 Jul; 44(1):66-72. PubMed ID: 10893523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MR measurements of pulsatile pressure gradients.
    Urchuk SN; Plewes DB
    J Magn Reson Imaging; 1994; 4(6):829-36. PubMed ID: 7865944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional, time-resolved (4D) relative pressure mapping using magnetic resonance imaging.
    Tyszka JM; Laidlaw DH; Asa JW; Silverman JM
    J Magn Reson Imaging; 2000 Aug; 12(2):321-9. PubMed ID: 10931596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of pulsatile flowfield in healthy thoracic aorta models.
    Wen CY; Yang AS; Tseng LY; Chai JW
    Ann Biomed Eng; 2010 Feb; 38(2):391-402. PubMed ID: 19890715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MR measurement of time-dependent blood pressure variations.
    Urchuk SN; Plewes DB
    J Magn Reson Imaging; 1995; 5(6):621-7. PubMed ID: 8748477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Velocity encoding versus acceleration encoding for pressure gradient estimation in MR haemodynamic studies.
    Balleux-Buyens F; Jolivet O; Bittoun J; Herment A
    Phys Med Biol; 2006 Oct; 51(19):4747-58. PubMed ID: 16985268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acceleration mapping by Fourier acceleration-encoding: in vitro study and initial results in the great thoracic vessels.
    Tasu JP; Jolivet O; Mousseaux E; Delouche A; Diebold B; Bittoun J
    Magn Reson Med; 1997 Jul; 38(1):110-6. PubMed ID: 9211386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beat-to-beat variation in pulse wave velocity during breathing maneuvers.
    Gaddum NR; Schaeffter T; Bührer M; Rutten M; Smith L; Chowienczyk PJ; Beerbaum PB
    Magn Reson Med; 2014 Jul; 72(1):202-10. PubMed ID: 23922308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved estimation of velocity and flow rate using regularized three-point phase-contrast velocimetry.
    Herment A; Mousseaux E; Jolivet O; DeCesare A; Frouin F; Todd-Pokropek A; Bittoun J
    Magn Reson Med; 2000 Jul; 44(1):122-8. PubMed ID: 10893530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High speed bolus tagging: time resolved velocity quantification of pulsatile flow in a single breath hold.
    Chien D; Saloner D; Laub G; Simonetti O; Anderson CM
    Magn Reson Med; 1994 Nov; 32(5):661-7. PubMed ID: 7808269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A velocity correlation method for measuring vascular compliance using MR imaging.
    Urchuk SN; Plewes DB
    J Magn Reson Imaging; 1995; 5(6):628-34. PubMed ID: 8748478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of arterial pressure waves into their forward and backward running components.
    Pythoud F; Stergiopulos N; Meister JJ
    J Biomech Eng; 1996 Aug; 118(3):295-301. PubMed ID: 8872250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-velocity cine magnetic resonance imaging measurement of pulsatile blood flow in children and young adults: in vitro and in vivo validation.
    Powell AJ; Maier SE; Chung T; Geva T
    Pediatr Cardiol; 2000; 21(2):104-10. PubMed ID: 10754076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neonatal aortic arch hemodynamics and perfusion during cardiopulmonary bypass.
    Pekkan K; Dur O; Sundareswaran K; Kanter K; Fogel M; Yoganathan A; Undar A
    J Biomech Eng; 2008 Dec; 130(6):061012. PubMed ID: 19045541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of left ventricular performance through temporal pressure variations measured by MR velocity and acceleration mappings.
    Tasu JP; Mousseaux E; Colin P; Slama MS; Jolivet O; Bittoun J
    J Magn Reson Imaging; 2002 Sep; 16(3):246-52. PubMed ID: 12205579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An experimental comparison of different methods of measuring wave propagation in viscoelastic tubes.
    Ursino M; Artioli E; Gallerani M
    J Biomech; 1994 Jul; 27(7):979-90. PubMed ID: 8063848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of segmented MR velocity mapping to measure small vessel pulsatile flow in a phantom simulating cardiac motion.
    Arheden H; Saeed M; Törnqvist E; Lund G; Wendland MF; Higgins CB; Ståhlberg F
    J Magn Reson Imaging; 2001 May; 13(5):722-8. PubMed ID: 11329193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of pulsatile flow using MRI and a Bayesian technique of probability analysis.
    Wise RG; Newling B; Gates AR; Xing D; Carpenter TA; Hall LD
    Magn Reson Imaging; 1996; 14(2):173-85. PubMed ID: 8847973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined MRI and CFD analysis of fully developed steady and pulsatile laminar flow through a bend.
    Weston SJ; Wood NB; Tabor G; Gosman AD; Firmin DN
    J Magn Reson Imaging; 1998; 8(5):1158-71. PubMed ID: 9786156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of physiological and simple pulsatile flows through stenosed arteries.
    Zendehbudi GR; Moayeri MS
    J Biomech; 1999 Sep; 32(9):959-65. PubMed ID: 10460133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.