BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 10893791)

  • 21. Microscale dispersion behaviors of dust particles during coal cutting at large-height mining face.
    Xie Y; Cheng W; Yu H; Sun B
    Environ Sci Pollut Res Int; 2018 Sep; 25(27):27141-27154. PubMed ID: 30022392
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Exposure to silica dust in coal-mining. Analysis based on measurements made by industrial hygiene laboratories in Poland, 2001-2005].
    Mikołajczyk U; Bujak-Pietrek S; Szadkowska-Stańczyk I
    Med Pr; 2010; 61(3):287-97. PubMed ID: 20677428
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High exposure to respirable dust and quartz in a labour-intensive coal mine in Tanzania.
    Mamuya SH; Bråtveit M; Mwaiselage J; Mashalla YJ; Moen BE
    Ann Occup Hyg; 2006 Mar; 50(2):197-204. PubMed ID: 16143714
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An evaluation of retrofit engineering control interventions to reduce perchloroethylene exposures in commercial dry-cleaning shops.
    Earnest GS; Ewers LM; Ruder AM; Petersen MR; Kovein RJ
    Appl Occup Environ Hyg; 2002 Feb; 17(2):104-11. PubMed ID: 11843196
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Open-air sprays for capturing and controlling airborne float coal dust on longwall faces.
    Beck TW; Seaman CE; Shahan MR; Mischler SE
    Min Eng; 2018 Jan; 70(1):42-48. PubMed ID: 29348700
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Research on environmental dust pollution: ventilation and dust space-time evolution law of a fully mechanized mining face with 7-m mining height.
    Chen D; Nie W; Xiu Z; Yang B; Du T; Liu Q; Peng H
    Environ Sci Pollut Res Int; 2022 May; 29(22):33627-33644. PubMed ID: 35028832
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of airborne float coal dust emitted during continuous mining, longwall mining and belt transport.
    Shahan MR; Seaman CE; Beck TW; Colinet JF; Mischler SE
    Min Eng; 2017 Sep; 69(9):61-66. PubMed ID: 28936001
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Examination of water spray airborne coal dust capture with three wetting agents.
    Organiscak JA
    Trans Soc Min Metall Explor Inc; 2013; 334(1):427-434. PubMed ID: 26251565
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [The struggle against dust in the Belgian coal mines. Situation at the beginning of 1976].
    Preat B; Vanstraelen M
    Rev Inst Hyg Mines (Hasselt); 1976; 31(4):204-19. PubMed ID: 1029062
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Problems in monitoring dust levels within mines.
    Hearl FJ; Hewett P
    Occup Med; 1993; 8(1):93-108. PubMed ID: 8456351
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A critique of MSHA procedures for determination of permissible respirable coal mine dust containing free silica.
    Corn M; Breysse P; Hall T; Chen G; Risby T; Swift DL
    Am Ind Hyg Assoc J; 1985 Jan; 46(1):4-8. PubMed ID: 2992262
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Examination of a newly developed mobile dry scrubber (DS) for coal mine dust control applications.
    Organiscak J; Noll J; Yantek D; Kendall B
    Trans Soc Min Metall Explor Inc; 2016 Mar; 340():38-47. PubMed ID: 28596699
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of respirable coal mine dust concentrations measured with an MRE and a newly-developed, two-stage impactor sampler.
    Treaftis HN; Tomb TF; Taylor CD
    Am Ind Hyg Assoc J; 1978 Nov; 39(11):891-7. PubMed ID: 736001
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Empirical engineering models for airborne respirable dust capture from water sprays and wet scrubbers.
    Organiscak JA; Klima SS; Pollock DE
    Min Eng; 2018 Oct; 70(10):50-57. PubMed ID: 30532342
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reducing workers' dust exposure during bag stacking in enclosed vehicles.
    Cecala AB; Covelli A; Thimons ED
    Am Ind Hyg Assoc J; 1989 Feb; 50(2):99-104. PubMed ID: 2929432
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulatory implications of airborne respirable free silica variability in underground coal mines.
    Villnave JM; Corn M; Francis M; Hall TA
    Am Ind Hyg Assoc J; 1991 Mar; 52(3):107-12. PubMed ID: 1851384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of coal dust contiguity on xerophthalmia development.
    Sun Z; Hong J; Yang D; Liu G
    Cutan Ocul Toxicol; 2007; 26(3):257-63. PubMed ID: 17687690
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The working conditions during the prototype commercial operation of continuous-output equipment in KATEK coal stripping and sanitary improvement measures].
    Borisenkova RV; Lutsenko LA; Bobulov SM; Skriabin SIu; Korotenko OA; Egorov VS
    Gig Tr Prof Zabol; 1992; (11-12):7-10. PubMed ID: 1303401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Methods to lower the dust exposure of bag machine operators and bag stackers.
    Cecala AB; Timko RJ; Thimons ED
    Appl Occup Environ Hyg; 2000 Oct; 15(10):751-65. PubMed ID: 11036726
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon fibre composite for ventilation air methane (VAM) capture.
    Thiruvenkatachari R; Su S; Yu XX
    J Hazard Mater; 2009 Dec; 172(2-3):1505-11. PubMed ID: 19733967
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.