BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 10894126)

  • 1. Nanomolar concentrations of inorganic lead increase Ca2+ efflux and decrease intracellular free Ca2+ ion concentrations in cultured rat hippocampal neurons by a calmodulin-dependent mechanism.
    Ferguson C; Kern M; Audesirk G
    Neurotoxicology; 2000 Jun; 21(3):365-78. PubMed ID: 10894126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inorganic lead may inhibit neurite development in cultured rat hippocampal neurons through hyperphosphorylation.
    Kern M; Audesirk G
    Toxicol Appl Pharmacol; 1995 Sep; 134(1):111-23. PubMed ID: 7676445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inorganic lead and calcium interact positively in activation of calmodulin.
    Kern M; Wisniewski M; Cabell L; Audesirk G
    Neurotoxicology; 2000 Jun; 21(3):353-63. PubMed ID: 10894125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyamine transport regulation by calcium and calmodulin: role of Ca(2+)-ATPase.
    Khan NA; Sezan A; Quemener V; Moulinoux JP
    J Cell Physiol; 1993 Dec; 157(3):493-501. PubMed ID: 8253860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential induction of heme oxygenase and other stress proteins in cultured hippocampal astrocytes and neurons by inorganic lead.
    Cabell L; Ferguson C; Luginbill D; Kern M; Weingart A; Audesirk G
    Toxicol Appl Pharmacol; 2004 Jul; 198(1):49-60. PubMed ID: 15207648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of calcium efflux from cultured rat dorsal root ganglion neurons.
    Werth JL; Usachev YM; Thayer SA
    J Neurosci; 1996 Feb; 16(3):1008-15. PubMed ID: 8558228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lead can inhibit NMDA-, K(+)-, QA/KA-induced increases in intracellular free Ca2+ in cultured rat hippocampal neurons.
    Zhang HS; Song LH; Wang L; Qin YH
    Biomed Environ Sci; 2002 Dec; 15(4):330-40. PubMed ID: 12642990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of lead on learn and memory and release of intracellular free Ca2+ from calcium pool in dissociated mouse hippocampal neurons].
    Gao MQ; Sun LG; Zhang TB; Teng Z; Liu S
    Wei Sheng Yan Jiu; 2005 Jul; 34(4):400-2. PubMed ID: 16229257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calmidazolium leads to an increase in the cytosolic Ca2+ concentration in Dictyostelium discoideum by induction of Ca2+ release from intracellular stores and influx of extracellular Ca2+.
    Schlatterer C; Schaloske R
    Biochem J; 1996 Jan; 313 ( Pt 2)(Pt 2):661-7. PubMed ID: 8573107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Misinterpretation of the effect of amlodipine on cytosolic calcium concentration with fura-2 fluorospectrometry.
    Asai M; Takeuchi K; Uchida S; Urushida T; Katoh H; Satoh H; Yamada S; Hayashi H; Watanabe H
    Naunyn Schmiedebergs Arch Pharmacol; 2008 Jun; 377(4-6):423-7. PubMed ID: 18228004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in the expression of plasma membrane calcium extrusion systems during the maturation of hippocampal neurons.
    Kip SN; Gray NW; Burette A; Canbay A; Weinberg RJ; Strehler EE
    Hippocampus; 2006; 16(1):20-34. PubMed ID: 16200642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pituitary adenylate cyclase activating polypeptide and vasoactive intestinal peptide increase cytosolic free calcium concentration in cultured rat hippocampal neurons.
    Tatsuno I; Yada T; Vigh S; Hidaka H; Arimura A
    Endocrinology; 1992 Jul; 131(1):73-81. PubMed ID: 1319331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic regulation of [Ca2+]i by plasma membrane Ca(2+)-ATPase and Na+/Ca2+ exchange during capacitative Ca2+ entry in bovine vascular endothelial cells.
    Sedova M; Blatter LA
    Cell Calcium; 1999 May; 25(5):333-43. PubMed ID: 10463097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient rise in intracellular calcium produces a long-lasting increase in plasma membrane calcium pump activity in rat sensory neurons.
    Pottorf WJ; Thayer SA
    J Neurochem; 2002 Nov; 83(4):1002-8. PubMed ID: 12421373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of intracellular Ca2+ concentration changes by use of fura-2 in the generation of myogenic contraction of dog cerebral artery in response to quick stretch.
    Tanaka Y; Nakayama K
    Res Commun Mol Pathol Pharmacol; 1998 Feb; 99(2):169-86. PubMed ID: 9583091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of inorganic lead on voltage-sensitive calcium channels differ among cell types and among channel subtypes.
    Audesirk G; Audesirk T
    Neurotoxicology; 1993; 14(2-3):259-65. PubMed ID: 8247399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium/calmodulin-dependent protein kinase II activity and expression are altered in the hippocampus of Pb2+-exposed rats.
    Toscano CD; O'Callaghan JP; Guilarte TR
    Brain Res; 2005 May; 1044(1):51-8. PubMed ID: 15862789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of probes for calcium-calmodulin and protein kinase C signalling on the plasma membrane Ca2+-ATPase activity of rat synaptosomes and leukocyte membranes.
    Grosman N
    Immunopharmacology; 1998 Aug; 40(2):163-71. PubMed ID: 9826030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamate-induced protease-mediated loss of plasma membrane Ca2+ pump activity in rat hippocampal neurons.
    Pottorf WJ; Johanns TM; Derrington SM; Strehler EE; Enyedi A; Thayer SA
    J Neurochem; 2006 Sep; 98(5):1646-56. PubMed ID: 16923173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lead-calcium interactions in cellular lead toxicity.
    Simons TJ
    Neurotoxicology; 1993; 14(2-3):77-85. PubMed ID: 8247414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.