These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 10894808)
1. Oxidation of LDL by myeloperoxidase and reactive nitrogen species: reaction pathways and antioxidant protection. Carr AC; McCall MR; Frei B Arterioscler Thromb Vasc Biol; 2000 Jul; 20(7):1716-23. PubMed ID: 10894808 [TBL] [Abstract][Full Text] [Related]
2. Mechanisms of oxidative damage of low density lipoprotein in human atherosclerosis. Heinecke JW Curr Opin Lipidol; 1997 Oct; 8(5):268-74. PubMed ID: 9335950 [TBL] [Abstract][Full Text] [Related]
3. Nitrogen dioxide radical generated by the myeloperoxidase-hydrogen peroxide-nitrite system promotes lipid peroxidation of low density lipoprotein. Byun J; Mueller DM; Fabjan JS; Heinecke JW FEBS Lett; 1999 Jul; 455(3):243-6. PubMed ID: 10437781 [TBL] [Abstract][Full Text] [Related]
4. Oxidized amino acids: culprits in human atherosclerosis and indicators of oxidative stress. Heinecke JW Free Radic Biol Med; 2002 Jun; 32(11):1090-101. PubMed ID: 12031894 [TBL] [Abstract][Full Text] [Related]
5. Pathways for oxidation of low density lipoprotein by myeloperoxidase: tyrosyl radical, reactive aldehydes, hypochlorous acid and molecular chlorine. Heinecke JW Biofactors; 1997; 6(2):145-55. PubMed ID: 9259996 [TBL] [Abstract][Full Text] [Related]
6. p-Hydroxyphenylacetaldehyde, the major product of tyrosine oxidation by the activated myeloperoxidase system can act as an antioxidant in LDL. Exner M; Alt E; Hermann M; Hofbauer R; Kapiotis S; Quehenberger P; Speiser W; Minar E; Gmeiner B FEBS Lett; 2001 Feb; 490(1-2):28-31. PubMed ID: 11172805 [TBL] [Abstract][Full Text] [Related]
7. Secondary radicals derived from chloramines of apolipoprotein B-100 contribute to HOCl-induced lipid peroxidation of low-density lipoproteins. Hazell LJ; Davies MJ; Stocker R Biochem J; 1999 May; 339 ( Pt 3)(Pt 3):489-95. PubMed ID: 10215584 [TBL] [Abstract][Full Text] [Related]
8. Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro. Podrez EA; Schmitt D; Hoff HF; Hazen SL J Clin Invest; 1999 Jun; 103(11):1547-60. PubMed ID: 10359564 [TBL] [Abstract][Full Text] [Related]
9. Immunohistochemical evidence for the myeloperoxidase/H2O2/halide system in human atherosclerotic lesions: colocalization of myeloperoxidase and hypochlorite-modified proteins. Malle E; Waeg G; Schreiber R; Gröne EF; Sattler W; Gröne HJ Eur J Biochem; 2000 Jul; 267(14):4495-503. PubMed ID: 10880973 [TBL] [Abstract][Full Text] [Related]
10. 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. Hazen SL; Heinecke JW J Clin Invest; 1997 May; 99(9):2075-81. PubMed ID: 9151778 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of LDL oxidation and myeloperoxidase dependent tyrosyl radical formation by the selective estrogen receptor modulator raloxifene (LY139481 HCL). Zuckerman SH; Bryan N Atherosclerosis; 1996 Sep; 126(1):65-75. PubMed ID: 8879435 [TBL] [Abstract][Full Text] [Related]
13. The role of oxidized lipoproteins in atherogenesis. Berliner JA; Heinecke JW Free Radic Biol Med; 1996; 20(5):707-27. PubMed ID: 8721615 [TBL] [Abstract][Full Text] [Related]
14. Teaching the basics of redox biology to medical and graduate students: Oxidants, antioxidants and disease mechanisms. Kalyanaraman B Redox Biol; 2013 Feb; 1(1):244-57. PubMed ID: 24024158 [TBL] [Abstract][Full Text] [Related]
15. The participation of nitric oxide in cell free- and its restriction of macrophage-mediated oxidation of low-density lipoprotein. Jessup W; Mohr D; Gieseg SP; Dean RT; Stocker R Biochim Biophys Acta; 1992 Oct; 1180(1):73-82. PubMed ID: 1327163 [TBL] [Abstract][Full Text] [Related]
16. Human low density lipoprotein as a target of hypochlorite generated by myeloperoxidase. Jerlich A; Fabjan JS; Tschabuschnig S; Smirnova AV; Horakova L; Hayn M; Auer H; Guttenberger H; Leis HJ; Tatzber F; Waeg G; Schaur RJ Free Radic Biol Med; 1998 May; 24(7-8):1139-48. PubMed ID: 9626568 [TBL] [Abstract][Full Text] [Related]
17. Effect of acetaminophen on the myeloperoxidase-hydrogen peroxide-nitrite mediated oxidation of LDL. Chou TM; Greenspan P Biochim Biophys Acta; 2002 Mar; 1581(1-2):57-63. PubMed ID: 11960752 [TBL] [Abstract][Full Text] [Related]
18. Interaction of oxidized low density lipoprotein with macrophages in atherosclerosis, and the antiatherogenicity of antioxidants. Aviram M Eur J Clin Chem Clin Biochem; 1996 Aug; 34(8):599-608. PubMed ID: 8877334 [TBL] [Abstract][Full Text] [Related]
19. Basic research in antioxidant inhibition of steps in atherogenesis. Gokce N; Frei B J Cardiovasc Risk; 1996 Aug; 3(4):352-7. PubMed ID: 8946264 [TBL] [Abstract][Full Text] [Related]
20. Macrophage foam cell formation during early atherogenesis is determined by the balance between pro-oxidants and anti-oxidants in arterial cells and blood lipoproteins. Aviram M Antioxid Redox Signal; 1999; 1(4):585-94. PubMed ID: 11233155 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]