These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 1089566)

  • 1. Fluorescence studies of phosphoribosyladenosine triphosphate synthetase of Escherichia coli.
    Tébar AR; Fernández VM; Martíndelrío R; Ballesteros AO
    FEBS Lett; 1975 Feb; 50(2):239-42. PubMed ID: 1089566
    [No Abstract]   [Full Text] [Related]  

  • 2. Thermal stability of phosphoribosyladenosine triphosphate synthetase as reflected in its circular dichroism and activity properties. Effect of inhibitors.
    Kryvi H
    Biochim Biophys Acta; 1973 Jul; 317(1):123-30. PubMed ID: 4579234
    [No Abstract]   [Full Text] [Related]  

  • 3. Conformational changes and aggregation in phosphoribosyladenosine triphosphate synthetase. Ligand effects on hydrogen exchange and hydrophobic probe uptake.
    Klungsoyr L
    Biochemistry; 1971 Dec; 10(26):4875-80. PubMed ID: 4332460
    [No Abstract]   [Full Text] [Related]  

  • 4. Multiple aggregation states of phosphoribosyladenosine triphosphate synthetase.
    Parsons SM; Koshland DE
    J Biol Chem; 1974 Jul; 249(13):4119-26. PubMed ID: 4368937
    [No Abstract]   [Full Text] [Related]  

  • 5. Characterization of slowly interconvertible states of phosphoribosyladenosine triphosphate synthetase dependent on temperature, substrates, and histidine.
    Bell RM; Parsons SM; Dubravac SA; Redfield AG; Koshland DE
    J Biol Chem; 1974 Jul; 249(13):4110-8. PubMed ID: 4368489
    [No Abstract]   [Full Text] [Related]  

  • 6. Phenylalanyl-tRNA synthetase from E. coli: synergistic coupling between the sites for binding of L-phenylalanine and ATP.
    Holler E; Bartmann P; Hanke T; Kosakowski HM
    Biochem Biophys Res Commun; 1973 Aug; 53(4):1205-12. PubMed ID: 4584021
    [No Abstract]   [Full Text] [Related]  

  • 7. Sedimentation behaviour of phosphoribosyladenosine triphosphate synthetase. Effects of substrates and modifiers.
    Klungsöyr L; Kryvi H
    Biochim Biophys Acta; 1971 Feb; 227(2):327-36. PubMed ID: 4927808
    [No Abstract]   [Full Text] [Related]  

  • 8. Regulatory properties of phosphoribosyladenosine triphosphate synthetase. Synergism between adenosine monophosphate, phosphoribosyladenosine triphosphate, and histidine.
    Klungsoyr L; Atkinson DE
    Biochemistry; 1970 Apr; 9(9):2021-7. PubMed ID: 4909873
    [No Abstract]   [Full Text] [Related]  

  • 9. Feedback regulation in the anthranilate aggregate from wild type and mutant strains of Escherichia coli.
    Pabst MJ; Kuhn JC; Somerville RL
    J Biol Chem; 1973 Feb; 248(3):901-14. PubMed ID: 4567790
    [No Abstract]   [Full Text] [Related]  

  • 10. Isoleucyl transfer ribonucleic acid synthetase of Escherichia coli B. Effects of magnesium and spermine on the amino acid activation reaction.
    Holler E
    Biochemistry; 1973 Mar; 12(6):1142-9. PubMed ID: 4569771
    [No Abstract]   [Full Text] [Related]  

  • 11. Mechanistic studies of glutamine synthetase from Escherichia coli. Fluorometric identification of a reactive intermediate in the biosynthetic reaction.
    Timmons RB; Rhee SG; Luterman DL; Chock PB
    Biochemistry; 1974 Oct; 13(22):4479-85. PubMed ID: 4154101
    [No Abstract]   [Full Text] [Related]  

  • 12. The mechanism of action of methionyl-tRNA synthetase from Escherichia coli. 1. Fluorescence studies on tRNAMet binding as a function of ligands, ions and pH.
    Blanquet S; Iwatsubo M; Waller JP
    Eur J Biochem; 1973 Jul; 36(1):213-26. PubMed ID: 4581817
    [No Abstract]   [Full Text] [Related]  

  • 13. A rapid isolation of phosphoribosyladenosine triphosphate synthetase and comparison to native enzyme.
    Parsons SM; Koshland DE
    J Biol Chem; 1974 Jul; 249(13):4104-9. PubMed ID: 4368347
    [No Abstract]   [Full Text] [Related]  

  • 14. Phenylalanyl-tRNA synthetase from Escherichia coli K10. Synergistic coupling between the sites for binding of L-phenylalanine and ATP.
    Kosakowski HM; Holler E
    Eur J Biochem; 1973 Oct; 38(2):274-82. PubMed ID: 4359386
    [No Abstract]   [Full Text] [Related]  

  • 15. Interaction between energy charge and product feedback in the regulation of biosynthetic enzymes. Aspartokinase, phosphoribosyladenosine triphosphate synthetase, and phosphoribosyl pyrophosphate synthetase.
    Klungsoyr L; Hagemen JH; Fall L; Atkinson DE
    Biochemistry; 1968 Nov; 7(11):4035-40. PubMed ID: 4881060
    [No Abstract]   [Full Text] [Related]  

  • 16. Dinitrophenol, dicoumarol and pentachlorophenol as inhibitors and parasite substrates in the ATP phosphoribosyltransferase reaction.
    Dall-Larsen T; Kryvi H; Klungsoyr L
    Eur J Biochem; 1976 Jul; 66(3):443-6. PubMed ID: 60234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic cooperativity and subunit interactions in Escherichia coli glutamine synthetase: binding and kinetics with methionine sulfoximine and related inhibitors.
    Wedler FC; Sugiyama Y; Fisher KE
    Biochemistry; 1982 Apr; 21(9):2168-77. PubMed ID: 6124276
    [No Abstract]   [Full Text] [Related]  

  • 18. Rose Bengal: a spectroscopic probe for ribonucleic acid polymerase.
    Wu CW; Wu FY
    Biochemistry; 1973 Oct; 12(22):4349-55. PubMed ID: 4584324
    [No Abstract]   [Full Text] [Related]  

  • 19. On the active site topography of isoleucyl transfer ribonucleic acid synthetase of Escherichia coli B.
    Holler E; Rainey P; Orme A; Bennett EL; Calvin M
    Biochemistry; 1973 Mar; 12(6):1150-9. PubMed ID: 4347457
    [No Abstract]   [Full Text] [Related]  

  • 20. Couplings between the sites for methionine and adenosine 5'-triphosphate in the amino acid activation reaction catalyzed by trypsin-modified methionyl-transfer RNA synthetase from Escherichia coli.
    Fayat G; Fromant M; Blanquet S
    Biochemistry; 1977 May; 16(11):2570-9. PubMed ID: 193563
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.