These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 1089566)

  • 21. Binding of divalent magnesium by Escherichia coli phosphoribosyl diphosphate synthetase.
    Willemoës M; Hove-Jensen B
    Biochemistry; 1997 Apr; 36(16):5078-83. PubMed ID: 9125530
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Epsilon-adenylylated glutamine synthetase: an internal fluorescence probe for enzyme conformation.
    Chock PB; Huang CY; Timmons RB; Stadtman ER
    Proc Natl Acad Sci U S A; 1973 Nov; 70(11):3134-8. PubMed ID: 4150372
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Studies on the quaternary structure of the first enzyme for histidine biosynthesis.
    Tebar AR; Fernandez VM; Martin Del Rio R; Ballesteros AO
    Experientia; 1973 Dec; 29(12):1477-9. PubMed ID: 4358959
    [No Abstract]   [Full Text] [Related]  

  • 24. Half-of-the-sites reactivity and the conformational states of cytidine triphosphate synthetase.
    Levitzki A; Stallcup WB; Koshland DE
    Biochemistry; 1971 Aug; 10(18):3371-8. PubMed ID: 4940762
    [No Abstract]   [Full Text] [Related]  

  • 25. The binding of specific ligands to adenosine-triphosphate phosphoribosyltransferase.
    Dall-Larsen T; Klungsoyr L
    Eur J Biochem; 1976 Oct; 69(1):195-201. PubMed ID: 991855
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of an allosteric effector. Guanosine triphosphate activation in cytosine triphosphate synthetase.
    Levitzki A; Koshland DE
    Biochemistry; 1972 Jan; 11(2):241-6. PubMed ID: 4550559
    [No Abstract]   [Full Text] [Related]  

  • 27. Resolving the fluorescence response of Escherichia coli carbamoyl phosphate synthetase: mapping intra- and intersubunit conformational changes.
    Johnson JL; West JK; Nelson AD; Reinhart GD
    Biochemistry; 2007 Jan; 46(2):387-97. PubMed ID: 17209549
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The mechanism of action of methionyl-tRNA synthetase. 3. Ion requirements and kinetic parameters of the ATP-PPi exchange and methionine-transfer reactions catalyzed by the native and trypsin-modified enzymes.
    Lawrence F; Blanquet S; Poiret M; Robert-Gero M; Waller JP
    Eur J Biochem; 1973 Jul; 36(1):234-43. PubMed ID: 4581819
    [No Abstract]   [Full Text] [Related]  

  • 29. Distance changes at the regulatory and catalytic sites on Escherichia coli glutamine synthetase: a spin label study on the effect of substrate(s) binding.
    Ubom GA; Rhee SG; Hunt JB; Chock PB
    Biochim Biophys Acta; 1991 Mar; 1077(1):91-8. PubMed ID: 1672611
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanisms of inhibition of adenine phosphoribosyltransferase by adenine nucleosides and nucleotides.
    Henderson JF; Gadd RE; Palser HM; Hori M
    Can J Biochem; 1970 May; 48(5):573-9. PubMed ID: 5535743
    [No Abstract]   [Full Text] [Related]  

  • 31. Kinetic scheme and kinetic parameters of the exchange of ATP-32P-pyrophosphates, catalyzed by tryptophanyl-tRNA synthetase from beef pancreas.
    Zinov'ev VV; Kiselev LL; Knorre DG; Kochkina LL; Malygin EG; Slin'ko MG; Timoshenko VI; Favorova OO
    Mol Biol; 1974 Nov; 8(3):303-10. PubMed ID: 4373648
    [No Abstract]   [Full Text] [Related]  

  • 32. Regulation of Escherichia coli glutamine synthetase. Evidence for the action of some feedback modifiers at the active site of the unadenylylated enzyme.
    Dahlquist FW; Purich DL
    Biochemistry; 1975 May; 14(9):1980-9. PubMed ID: 235974
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tyrosyl-tRNA synthetase from Escherichia coli. Stoichiometry of ligand binding and half-of-the-sites reactivity in aminoacylation.
    Jakes R; Fersht AR
    Biochemistry; 1975 Jul; 14(15):3344-50. PubMed ID: 1096941
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of metal-metal distances in E. coli glutamine synthetase by EPR.
    Villafranca JJ; Balakrishnan MS; Wedler FC
    Biochem Biophys Res Commun; 1977 Mar; 75(2):464-71. PubMed ID: 15566
    [No Abstract]   [Full Text] [Related]  

  • 35. Kinetic properties of phosphoribosyladenosine triphosphate synthetase. Inhibition by aggregation at high enzyme concentrations.
    Kryvi H; Klungsöyr L
    Biochim Biophys Acta; 1971 Jun; 235(3):429-34. PubMed ID: 4378091
    [No Abstract]   [Full Text] [Related]  

  • 36. Distances between active site probes in glutamine synthetase from Escherichia coli: fluorescence energy transfer in free and in stacked dodecamers.
    Maurizi MR; Kasprzyk PG; Ginsburg A
    Biochemistry; 1986 Jan; 25(1):141-51. PubMed ID: 2869781
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isoleucyl transfer ribonucleic acid synthetase of Escherichia coli B. A rapid kinetic investigation of the L-isoleucine-activating reaction.
    Holler E; Calvin M
    Biochemistry; 1972 Sep; 11(20):3741-52. PubMed ID: 4342025
    [No Abstract]   [Full Text] [Related]  

  • 38. Equilibrium analysis of L-Phe-tRNA Phe complexes with L-phenylalanyl transfer ribonucleic acid synthetase of Escherichia coli K 10.
    Bartmann P; Hanke T; Hammer-Raber B; Holler E
    Biochemistry; 1974 Sep; 13(20):4171-5. PubMed ID: 4606521
    [No Abstract]   [Full Text] [Related]  

  • 39. An equilibrium binding study of the interaction of aspartate transcarbamylase with cytidine 5'-triphosphate and adenosine 5'-triphosphate.
    Matsumoto S; Hammes GG
    Biochemistry; 1973 Mar; 12(7):1388-94. PubMed ID: 4572358
    [No Abstract]   [Full Text] [Related]  

  • 40. Guanine phosphoribosyltransferase from Escherichia coli, specificity and properties.
    Miller RL; Ramsey GA; Krenitsky TA; Elion GB
    Biochemistry; 1972 Dec; 11(25):4723-31. PubMed ID: 4347700
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.