These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 10896186)

  • 1. Direct control of a computer from the human central nervous system.
    Kennedy PR; Bakay RA; Moore MM; Adams K; Goldwaithe J
    IEEE Trans Rehabil Eng; 2000 Jun; 8(2):198-202. PubMed ID: 10896186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The thought translation device (TTD) for completely paralyzed patients.
    Birbaumer N; Kübler A; Ghanayim N; Hinterberger T; Perelmouter J; Kaiser J; Iversen I; Kotchoubey B; Neumann N; Flor H
    IEEE Trans Rehabil Eng; 2000 Jun; 8(2):190-3. PubMed ID: 10896183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictors of successful self control during brain-computer communication.
    Neumann N; Birbaumer N
    J Neurol Neurosurg Psychiatry; 2003 Aug; 74(8):1117-21. PubMed ID: 12876247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-computer interface research at the Wadsworth Center.
    Wolpaw JR; McFarland DJ; Vaughan TM
    IEEE Trans Rehabil Eng; 2000 Jun; 8(2):222-6. PubMed ID: 10896194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallel man-machine training in development of EEG-based cursor control.
    Kostov A; Polak M
    IEEE Trans Rehabil Eng; 2000 Jun; 8(2):203-5. PubMed ID: 10896187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A direct brain interface based on event-related potentials.
    Levine SP; Huggins JE; BeMent SL; Kushwaha RK; Schuh LA; Rohde MM; Passaro EA; Ross DA; Elisevich KV; Smith BJ
    IEEE Trans Rehabil Eng; 2000 Jun; 8(2):180-5. PubMed ID: 10896180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A commentary on brain-computer interfacing and its impact on rehabilitation science and clinical applicability.
    Robinson CJ
    IEEE Trans Rehabil Eng; 2000 Jun; 8(2):161-3. PubMed ID: 10896177
    [No Abstract]   [Full Text] [Related]  

  • 8. Brain-machine interfaces for real-time speech synthesis.
    Guenther FH; Brumberg JS
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5360-3. PubMed ID: 22255549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current trends in Graz Brain-Computer Interface (BCI) research.
    Pfurtscheller G; Neuper C; Guger C; Harkam W; Ramoser H; Schlögl A; Obermaier B; Pregenzer M
    IEEE Trans Rehabil Eng; 2000 Jun; 8(2):216-9. PubMed ID: 10896192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array.
    Simeral JD; Kim SP; Black MJ; Donoghue JP; Hochberg LR
    J Neural Eng; 2011 Apr; 8(2):025027. PubMed ID: 21436513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A natural basis for efficient brain-actuated control.
    Makeig S; Enghoff S; Jung TP; Sejnowski TJ
    IEEE Trans Rehabil Eng; 2000 Jun; 8(2):208-11. PubMed ID: 10896189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer control using human intracortical local field potentials.
    Kennedy PR; Kirby MT; Moore MM; King B; Mallory A
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):339-44. PubMed ID: 15473196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adapting human-machine interfaces to user performance.
    Danziger Z; Fishbach A; Mussa-Ivaldi FA
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4486-90. PubMed ID: 19163712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graz-BCI: state of the art and clinical applications.
    Pfurtscheller G; Neuper C; Müller GR; Obermaier B; Krausz G; Schlögl A; Scherer R; Graimann B; Keinrath C; Skliris D; Wörtz M; Supp G; Schrank C
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):177-80. PubMed ID: 12899267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of a brain-computer interface using stereotactic depth electrodes in and adjacent to the hippocampus.
    Krusienski DJ; Shih JJ
    J Neural Eng; 2011 Apr; 8(2):025006. PubMed ID: 21436521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain-computer interfaces for communication and control.
    Wolpaw JR; Birbaumer N; McFarland DJ; Pfurtscheller G; Vaughan TM
    Clin Neurophysiol; 2002 Jun; 113(6):767-91. PubMed ID: 12048038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Answering questions with an electroencephalogram-based brain-computer interface.
    Miner LA; McFarland DJ; Wolpaw JR
    Arch Phys Med Rehabil; 1998 Sep; 79(9):1029-33. PubMed ID: 9749678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A binary spelling interface with random errors.
    Perelmouter J; Birbaumer N
    IEEE Trans Rehabil Eng; 2000 Jun; 8(2):227-32. PubMed ID: 10896195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain-computer interfaces based on the steady-state visual-evoked response.
    Middendorf M; McMillan G; Calhoun G; Jones KS
    IEEE Trans Rehabil Eng; 2000 Jun; 8(2):211-4. PubMed ID: 10896190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.