BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 10896715)

  • 1. Mechanisms for the time-dependent decay of inward currents through cloned Kir2.1 channels expressed in Xenopus oocytes.
    Shieh RC
    J Physiol; 2000 Jul; 526 Pt 2(Pt 2):241-52. PubMed ID: 10896715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kir2.1 encodes the inward rectifier potassium channel in rat arterial smooth muscle cells.
    Bradley KK; Jaggar JH; Bonev AD; Heppner TJ; Flynn ER; Nelson MT; Horowitz B
    J Physiol; 1999 Mar; 515 ( Pt 3)(Pt 3):639-51. PubMed ID: 10066894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ammonium ions induce inactivation of Kir2.1 potassium channels expressed in Xenopus oocytes.
    Shieh RC; Lee YL
    J Physiol; 2001 Sep; 535(Pt 2):359-70. PubMed ID: 11533129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [K+] dependence of open-channel conductance in cloned inward rectifier potassium channels (IRK1, Kir2.1).
    Lopatin AN; Nichols CG
    Biophys J; 1996 Aug; 71(2):682-94. PubMed ID: 8842207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of Ba2+ with the pores of the cloned inward rectifier K+ channels Kir2.1 expressed in Xenopus oocytes.
    Shieh RC; Chang JC; Arreola J
    Biophys J; 1998 Nov; 75(5):2313-22. PubMed ID: 9788926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [K+] dependence of polyamine-induced rectification in inward rectifier potassium channels (IRK1, Kir2.1).
    Lopatin AN; Nichols CG
    J Gen Physiol; 1996 Aug; 108(2):105-13. PubMed ID: 8854340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inward rectification of the IRK1 channel expressed in Xenopus oocytes: effects of intracellular pH reveal an intrinsic gating mechanism.
    Shieh RC; John SA; Lee JK; Weiss JN
    J Physiol; 1996 Jul; 494 ( Pt 2)(Pt 2):363-76. PubMed ID: 8841997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanism of inward rectification of potassium channels: "long-pore plugging" by cytoplasmic polyamines.
    Lopatin AN; Makhina EN; Nichols CG
    J Gen Physiol; 1995 Nov; 106(5):923-55. PubMed ID: 8648298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of extracellular cations on the inward rectifying K+ channels Kir2.1 and Kir3.1/Kir3.4.
    Owen JM; Quinn CC; Leach R; Findlay JB; Boyett MR
    Exp Physiol; 1999 May; 84(3):471-88. PubMed ID: 10362846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel gating mechanism of polyamine block in the strong inward rectifier K channel Kir2.1.
    Lee JK; John SA; Weiss JN
    J Gen Physiol; 1999 Apr; 113(4):555-64. PubMed ID: 10102936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of rectification and permeation by two distinct sites after the second transmembrane region in Kir2.1 K+ channel.
    Kubo Y; Murata Y
    J Physiol; 2001 Mar; 531(Pt 3):645-60. PubMed ID: 11251047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A difference in inward rectification and polyamine block and permeation between the Kir2.1 and Kir3.1/Kir3.4 K+ channels.
    Makary SM; Claydon TW; Enkvetchakul D; Nichols CG; Boyett MR
    J Physiol; 2005 Nov; 568(Pt 3):749-66. PubMed ID: 16109731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of rectification in inward-rectifier K+ channels.
    Guo D; Ramu Y; Klem AM; Lu Z
    J Gen Physiol; 2003 Apr; 121(4):261-75. PubMed ID: 12642596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ser165 in the second transmembrane region of the Kir2.1 channel determines its susceptibility to blockade by intracellular Mg2+.
    Fujiwara Y; Kubo Y
    J Gen Physiol; 2002 Nov; 120(5):677-93. PubMed ID: 12407079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lack of negatively charged residues at the external mouth of Kir2.2 channels enable the voltage-dependent block by external Mg2+.
    Li J; Xie X; Liu J; Yu H; Zhang S; Zhan Y; Zhang H; Logothetis DE; An H
    PLoS One; 2014; 9(10):e111372. PubMed ID: 25350118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel.
    Yang J; Jan YN; Jan LY
    Neuron; 1995 May; 14(5):1047-54. PubMed ID: 7748552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of a functional Kir4 family inward rectifier K+ channel from a gene cloned from mouse liver.
    Pearson WL; Dourado M; Schreiber M; Salkoff L; Nichols CG
    J Physiol; 1999 Feb; 514 ( Pt 3)(Pt 3):639-53. PubMed ID: 9882736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ring of negative charge in BK channels facilitates block by intracellular Mg2+ and polyamines through electrostatics.
    Zhang Y; Niu X; Brelidze TI; Magleby KL
    J Gen Physiol; 2006 Aug; 128(2):185-202. PubMed ID: 16847096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of inward rectifier K+ channels by shift of intracellular pH dependence.
    Collins A; Larson M
    J Cell Physiol; 2005 Jan; 202(1):76-86. PubMed ID: 15389543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Architecture of a K+ channel inner pore revealed by stoichiometric covalent modification.
    Lu T; Nguyen B; Zhang X; Yang J
    Neuron; 1999 Mar; 22(3):571-80. PubMed ID: 10197536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.