BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 10896715)

  • 21. Polyamines as gating molecules of inward-rectifier K+ channels.
    Oliver D; Baukrowitz T; Fakler B
    Eur J Biochem; 2000 Oct; 267(19):5824-9. PubMed ID: 10998040
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of functional interaction between K(+) channel alpha- and beta-subunits and putative inactivation gating by Co-expression in Xenopus laevis oocytes.
    Zhang X; Ma J; Berkowitz GA
    Plant Physiol; 1999 Nov; 121(3):995-1002. PubMed ID: 10557249
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional roles of charged amino acid residues on the wall of the cytoplasmic pore of Kir2.1.
    Fujiwara Y; Kubo Y
    J Gen Physiol; 2006 Apr; 127(4):401-19. PubMed ID: 16533896
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Revisiting inward rectification: K ions permeate through Kir2.1 channels during high-affinity block by spermidine.
    Liu TA; Chang HK; Shieh RC
    J Gen Physiol; 2012 Mar; 139(3):245-59. PubMed ID: 22371365
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of cloned Kir2 channels with native inward rectifier K+ channels from guinea-pig cardiomyocytes.
    Liu GX; Derst C; Schlichthörl G; Heinen S; Seebohm G; Brüggemann A; Kummer W; Veh RW; Daut J; Preisig-Müller R
    J Physiol; 2001 Apr; 532(Pt 1):115-26. PubMed ID: 11283229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of permeant and blocking ions in cloned inward-rectifier K+ channels.
    Oliver D; Hahn H; Antz C; Ruppersberg JP; Fakler B
    Biophys J; 1998 May; 74(5):2318-26. PubMed ID: 9591659
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intracellular Mg2+ is a voltage-dependent pore blocker of HCN channels.
    Vemana S; Pandey S; Larsson HP
    Am J Physiol Cell Physiol; 2008 Aug; 295(2):C557-65. PubMed ID: 18579800
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unitary conductance variation in Kir2.1 and in cardiac inward rectifier potassium channels.
    Picones A; Keung E; Timpe LC
    Biophys J; 2001 Oct; 81(4):2035-49. PubMed ID: 11566776
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein kinase C inhibition of cloned inward rectifier (HRK1/KIR2.3) K+ channels expressed in Xenopus oocytes.
    Henry P; Pearson WL; Nichols CG
    J Physiol; 1996 Sep; 495 ( Pt 3)(Pt 3):681-8. PubMed ID: 8887775
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrostatic tuning of Mg2+ affinity in an inward-rectifier K+ channel.
    Lu Z; MacKinnon R
    Nature; 1994 Sep; 371(6494):243-6. PubMed ID: 7915826
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular characterization of an inwardly rectifying K+ channel from HeLa cells.
    Klein H; Garneau L; Coady M; Lemay G; Lapointe JY; Sauvé R
    J Membr Biol; 1999 Jan; 167(1):43-52. PubMed ID: 9878074
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two Kir2.1 channel populations with different sensitivities to Mg(2+) and polyamine block: a model for the cardiac strong inward rectifier K(+) channel.
    Yan DH; Ishihara K
    J Physiol; 2005 Mar; 563(Pt 3):725-44. PubMed ID: 15618275
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A conserved arginine residue in the pore region of an inward rectifier K channel (IRK1) as an external barrier for cationic blockers.
    Sabirov RZ; Tominaga T; Miwa A; Okada Y; Oiki S
    J Gen Physiol; 1997 Dec; 110(6):665-77. PubMed ID: 9382895
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CO(2) inhibits specific inward rectifier K(+) channels by decreases in intra- and extracellular pH.
    Zhu G; Liu C; Qu Z; Chanchevalap S; Xu H; Jiang C
    J Cell Physiol; 2000 Apr; 183(1):53-64. PubMed ID: 10699966
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strong voltage-dependent inward rectification of inward rectifier K+ channels is caused by intracellular spermine.
    Fakler B; Brändle U; Glowatzki E; Weidemann S; Zenner HP; Ruppersberg JP
    Cell; 1995 Jan; 80(1):149-54. PubMed ID: 7813010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular cloning and expression of an inwardly rectifying K(+) channel from bovine corneal endothelial cells.
    Yang D; Sun F; Thomas LL; Offord J; MacCallum DK; Dawson DC; Hughes BA; Ernst SA
    Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):2936-44. PubMed ID: 10967048
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ion permeation through a G-protein activated (GIRK1/GIRK5) inwardly rectifying potassium channel.
    Luchian T; Schreibmayer W
    Biochim Biophys Acta; 1998 Jan; 1368(2):167-70. PubMed ID: 9459595
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inward rectification of the IRK1 K+ channel reconstituted in lipid bilayers.
    Aleksandrov A; Velimirovic B; Clapham DE
    Biophys J; 1996 Jun; 70(6):2680-7. PubMed ID: 8744305
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Block of the Kir2.1 channel pore by alkylamine analogues of endogenous polyamines.
    Pearson WL; Nichols CG
    J Gen Physiol; 1998 Sep; 112(3):351-63. PubMed ID: 9725894
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of jellyfish potassium channels by external potassium ions.
    Grigoriev NG; Spafford JD; Spencer AN
    J Neurophysiol; 1999 Oct; 82(4):1728-39. PubMed ID: 10515962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.