BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 10897449)

  • 1. The calcium dependence of pigment translocation in freshwater shrimp red ovarian chromatophores.
    McNamara JC; Ribeiro MR
    Biol Bull; 2000 Jun; 198(3):357-66. PubMed ID: 10897449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium movements during pigment aggregation in freshwater shrimp chromatophores.
    Ribeiro M; McNamara JC
    Pigment Cell Res; 2007 Feb; 20(1):70-7. PubMed ID: 17250550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signaling events during cyclic guanosine monophosphate-regulated pigment aggregation in freshwater shrimp chromatophores.
    Milograna SR; Bell FT; McNamara JC
    Biol Bull; 2012 Oct; 223(2):178-91. PubMed ID: 23111130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pigment Translocation in Caridean Shrimp Chromatophores: Receptor Type, Signal Transduction, Second Messengers, and Cross Talk Among Multiple Signaling Cascades.
    Milograna SR; Ribeiro MR; Bell FT; McNamara JC
    J Exp Zool A Ecol Genet Physiol; 2016 Nov; 325(9):565-580. PubMed ID: 27935256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signal transduction, plasma membrane calcium movements, and pigment translocation in freshwater shrimp chromatophores.
    Milograna SR; Bell FT; McNamara JC
    J Exp Zool A Ecol Genet Physiol; 2010 Nov; 313(9):605-17. PubMed ID: 20683865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pigment granule translocation in red ovarian chromatophores from the palaemonid shrimp Macrobrachium olfersi (Weigmann, 1836): functional roles for the cytoskeleton and its molecular motors.
    Milograna SR; Ribeiro MR; Baqui MM; McNamara JC
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Dec; 178():90-101. PubMed ID: 25182860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A spring-matrix model for pigment translocation in the red ovarian chromatophores of the freshwater shrimp Macrobrachium olfersi (Crustacea, Decapoda).
    Boyle RT; McNamara JC
    Biol Bull; 2008 Apr; 214(2):111-21. PubMed ID: 18400993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic guanosine monophosphate signaling cascade mediates pigment aggregation in freshwater shrimp chromatophores.
    Ribeiro MR; McNamara JC
    Biol Bull; 2009 Apr; 216(2):138-48. PubMed ID: 19366925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association of kinesin and myosin with pigment granules in crustacean chromatophores.
    Boyle RT; McNamara JC
    Pigment Cell Res; 2006 Feb; 19(1):68-75. PubMed ID: 16420248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular calcium and cAMP regulate directional pigment movements in teleost erythrophores.
    Kotz KJ; McNiven MA
    J Cell Biol; 1994 Feb; 124(4):463-74. PubMed ID: 8106546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The control of pigment migration in isolated erythrophores of Holocentrus ascensionis (Osbeck). II. The role of calcium.
    Luby-Phelps K; Porter KR
    Cell; 1982 Jun; 29(2):441-50. PubMed ID: 6811138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microtubules, microfilaments, and pigment movement in the chromatophores of Palaemonetes vulgaris (Crustacea).
    Robison WG; Charlton JS
    J Exp Zool; 1973 Dec; 186(3):279-304. PubMed ID: 4765352
    [No Abstract]   [Full Text] [Related]  

  • 13. Pigment biogenesis in freshwater shrimp ventral nerve chord chromatophores.
    McNamara JC; Sesso A
    Cell Tissue Res; 1982; 222(1):167-75. PubMed ID: 7060092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative in vitro assay for crustacean chromatophorotropins and other pigment cell agonists.
    Britto AL; Castrucci AM; Visconti MA; Josefsson L
    Pigment Cell Res; 1990; 3(1):28-32. PubMed ID: 2115999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possible role of non-classical chromatophorotropins on the regulation of the crustacean erythrophore.
    Nery LE; Da Silva MA; Castrucci AM
    J Exp Zool; 1999 Nov; 284(6):711-6. PubMed ID: 10531558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultraviolet radiation induces dose-dependent pigment dispersion in crustacean chromatophores.
    Gouveia GR; Lopes TM; Neves CA; Nery LE; Trindade GS
    Pigment Cell Res; 2004 Oct; 17(5):545-8. PubMed ID: 15357842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An increase in extracellular Ca(2+) concentration induces pigment aggregation in teleostean melanophores.
    Yamada T; Fujii R
    Zoolog Sci; 2002 Aug; 19(8):829-39. PubMed ID: 12193799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological activity of the predicted red pigment-concentrating hormone of Daphnia pulex in a crustacean and an insect.
    Marco HG; Gäde G
    Gen Comp Endocrinol; 2010 Mar; 166(1):104-10. PubMed ID: 19686751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium-independent regulation of pigment granule aggregation and dispersion in teleost retinal pigment epithelial cells.
    King-Smith C; Chen P; Garcia D; Rey H; Burnside B
    J Cell Sci; 1996 Jan; 109 ( Pt 1)():33-43. PubMed ID: 8834788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-function studies on red pigment-concentrating hormone, II. The significance of the C-terminal tryptophan amide.
    Christensen M; Carlsen J; Josefsson L
    Hoppe Seylers Z Physiol Chem; 1979 Aug; 360(8):1051-60. PubMed ID: 511104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.