These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Relationship among biomechanical, biochemical, and cellular changes associated with osteoarthritis. Silver FH; Bradica G; Tria A Crit Rev Biomed Eng; 2001; 29(4):373-91. PubMed ID: 11822479 [TBL] [Abstract][Full Text] [Related]
4. Effect of the variation of loading frequency on surface failure of bovine articular cartilage. Sadeghi H; Shepherd DET; Espino DM Osteoarthritis Cartilage; 2015 Dec; 23(12):2252-2258. PubMed ID: 26074363 [TBL] [Abstract][Full Text] [Related]
5. Progressive cell-mediated changes in articular cartilage and bone in mice are initiated by a single session of controlled cyclic compressive loading. Ko FC; Dragomir CL; Plumb DA; Hsia AW; Adebayo OO; Goldring SR; Wright TM; Goldring MB; van der Meulen MC J Orthop Res; 2016 Nov; 34(11):1941-1949. PubMed ID: 26896841 [TBL] [Abstract][Full Text] [Related]
6. The sulfation pattern of chondroitin sulfate from articular cartilage explants in response to mechanical loading. Sauerland K; Plaas AH; Raiss RX; Steinmeyer J Biochim Biophys Acta; 2003 Jul; 1638(3):241-8. PubMed ID: 12878325 [TBL] [Abstract][Full Text] [Related]
7. Effects of shear stress on articular chondrocyte metabolism. Lane Smith R; Trindade MC; Ikenoue T; Mohtai M; Das P; Carter DR; Goodman SB; Schurman DJ Biorheology; 2000; 37(1-2):95-107. PubMed ID: 10912182 [TBL] [Abstract][Full Text] [Related]
8. Altered mechanics of cartilage with osteoarthritis: human osteoarthritis and an experimental model of joint degeneration. Setton LA; Elliott DM; Mow VC Osteoarthritis Cartilage; 1999 Jan; 7(1):2-14. PubMed ID: 10367011 [TBL] [Abstract][Full Text] [Related]
9. Do changes in the mechanical properties of articular cartilage promote catabolic destruction of cartilage and osteoarthritis? Silver FH; Bradica G; Tria A Matrix Biol; 2004 Nov; 23(7):467-76. PubMed ID: 15579313 [TBL] [Abstract][Full Text] [Related]
10. Role of subchondral bone in the initiation and progression of cartilage damage. Radin EL; Rose RM Clin Orthop Relat Res; 1986 Dec; (213):34-40. PubMed ID: 3780104 [TBL] [Abstract][Full Text] [Related]
11. A numerical model to study mechanically induced initiation and progression of damage in articular cartilage. Hosseini SM; Wilson W; Ito K; van Donkelaar CC Osteoarthritis Cartilage; 2014 Jan; 22(1):95-103. PubMed ID: 24185112 [TBL] [Abstract][Full Text] [Related]
12. Cartilage degradation in osteoarthritis: A process of osteochondral remodeling resembles the endochondral ossification in growth plate? Xiao ZF; Su GY; Hou Y; Chen SD; Lin DK Med Hypotheses; 2018 Dec; 121():183-187. PubMed ID: 30396477 [TBL] [Abstract][Full Text] [Related]
13. Inactivation of one allele of the type II collagen gene alters the collagen network in murine articular cartilage and makes cartilage softer. Hyttinen MM; Töyräs J; Lapveteläinen T; Lindblom J; Prockop DJ; Li SW; Arita M; Jurvelin JS; Helminen HJ Ann Rheum Dis; 2001 Mar; 60(3):262-8. PubMed ID: 11171689 [TBL] [Abstract][Full Text] [Related]
14. Depth-wise progression of osteoarthritis in human articular cartilage: investigation of composition, structure and biomechanics. Saarakkala S; Julkunen P; Kiviranta P; Mäkitalo J; Jurvelin JS; Korhonen RK Osteoarthritis Cartilage; 2010 Jan; 18(1):73-81. PubMed ID: 19733642 [TBL] [Abstract][Full Text] [Related]
15. Age matters: collagen birefringence of superficial articular cartilage is increased in young guinea-pigs but decreased in older animals after identical physiological type of joint loading. Hyttinen MM; Arokoski JP; Parkkinen JJ; Lammi MJ; Lapveteläinen T; Mauranen K; Király K; Tammi MI; Helminen HJ Osteoarthritis Cartilage; 2001 Nov; 9(8):694-701. PubMed ID: 11795988 [TBL] [Abstract][Full Text] [Related]
16. Thinning of articular cartilage after joint unloading or immobilization. An experimental investigation of the pathogenesis in mice. Nomura M; Sakitani N; Iwasawa H; Kohara Y; Takano S; Wakimoto Y; Kuroki H; Moriyama H Osteoarthritis Cartilage; 2017 May; 25(5):727-736. PubMed ID: 27916560 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of a subject-specific finite-element model of the equine metacarpophalangeal joint under physiological load. Harrison SM; Whitton RC; Kawcak CE; Stover SM; Pandy MG J Biomech; 2014 Jan; 47(1):65-73. PubMed ID: 24210848 [TBL] [Abstract][Full Text] [Related]
18. Functional adaptation of articular cartilage from birth to maturity under the influence of loading: a biomechanical analysis. Brommer H; Brama PA; Laasanen MS; Helminen HJ; van Weeren PR; Jurvelin JS Equine Vet J; 2005 Mar; 37(2):148-54. PubMed ID: 15779628 [TBL] [Abstract][Full Text] [Related]
19. Biomechanical, histologic and macroscopic assessment of articular cartilage in a sheep model of osteoarthritis. Oakley SP; Lassere MN; Portek I; Szomor Z; Ghosh P; Kirkham BW; Murrell GA; Wulf S; Appleyard RC Osteoarthritis Cartilage; 2004 Aug; 12(8):667-79. PubMed ID: 15262247 [TBL] [Abstract][Full Text] [Related]
20. Effect of superficial collagen patterns and fibrillation of femoral articular cartilage on knee joint mechanics-a 3D finite element analysis. Mononen ME; Mikkola MT; Julkunen P; Ojala R; Nieminen MT; Jurvelin JS; Korhonen RK J Biomech; 2012 Feb; 45(3):579-87. PubMed ID: 22137088 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]