These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 10898475)

  • 1. Influence of a fat on muscle oxygenation measurement using near-IR spectroscopy: quantitative analysis based on two-layered phantom experiments and Monte Carlo simulation.
    Lin L; Niwayama M; Shiga T; Kudo N; Takahashi M; Yamamoto K
    Front Med Biol Eng; 2000; 10(1):43-58. PubMed ID: 10898475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of a fat layer on the near infrared spectra of human muscle: quantitative analysis based on two-layered Monte Carlo simulations and phantom experiments.
    Yang Y; Soyemi OO; Landry MR; Soller BR
    Opt Express; 2005 Mar; 13(5):1570-9. PubMed ID: 16044624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of extracerebral layers on estimates of optical properties with continuous wave near infrared spectroscopy: analysis based on multi-layered brain tissue architecture and Monte Carlo simulation.
    Zhang Y; Liu X; Wang Q; Liu D; Yang C; Sun J
    Comput Assist Surg (Abingdon); 2019 Oct; 24(sup1):144-150. PubMed ID: 30676092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical measurements of absorption changes in two-layered diffusive media.
    Fabbri F; Sassaroli A; Henry ME; Fantini S
    Phys Med Biol; 2004 Apr; 49(7):1183-201. PubMed ID: 15128197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crosstalk and error analysis of fat layer on continuous wave near-infrared spectroscopy measurements.
    Sayli O; Aksel EB; Akin A
    J Biomed Opt; 2008; 13(6):064019. PubMed ID: 19123665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voxel-based measurement sensitivity of spatially resolved near-infrared spectroscopy in layered tissues.
    Niwayama M
    J Biomed Opt; 2018 Mar; 23(3):1-4. PubMed ID: 29524320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Research on the near-infrared (NIR) photon migration in multi-layered structures of biological tissues].
    Ding H; Wang F; Lin F; Su C
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Apr; 21(2):155-9. PubMed ID: 12947609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model.
    Kienle A; Glanzmann T
    Phys Med Biol; 1999 Nov; 44(11):2689-702. PubMed ID: 10588278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation-based optimization of a near-infrared spectroscopic subcutaneous fat thickness measuring device.
    Morhard R; Jeffery H; McEwan A
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():510-3. PubMed ID: 25570008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue Oximeter with Selectable Measurement Depth Using Spatially Resolved Near-Infrared Spectroscopy.
    Niwayama M; Unno N
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical characterization of two-layered turbid media for non-invasive, absolute oximetry in cerebral and extracerebral tissue.
    Hallacoglu B; Sassaroli A; Fantini S
    PLoS One; 2013; 8(5):e64095. PubMed ID: 23724023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating the absorption coefficient of the bottom layer in four-layered turbid mediums based on the time-domain depth sensitivity of near-infrared light reflectance.
    Sato C; Shimada M; Tanikawa Y; Hoshi Y
    J Biomed Opt; 2013 Sep; 18(9):097005. PubMed ID: 24057194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual Layered Models of Light Scattering in the Near Infrared A: Optical Measurements and Simulation
    Almajidy RK; Rackebrandt K; Gehring H; Hofmann UG
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4770-4774. PubMed ID: 31946928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near infrared spectroscopy for body fat sensing in neonates: quantitative analysis by GAMOS simulations.
    Mustafa FH; Jones PW; McEwan AL
    Biomed Eng Online; 2017 Jan; 16(1):14. PubMed ID: 28086963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of overlying tissue and probe geometry on the sensitivity of a near-infrared tissue oximeter.
    Feng W; Haishu D; Fenghua T; Jun Z; Qing X; Xianwu T
    Physiol Meas; 2001 Feb; 22(1):201-8. PubMed ID: 11236881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The influence of probe geometry on the sensitivity of tissue oximeter using near infra-red spectroscopy].
    Wang F; Ding H; Lin F
    Guang Pu Xue Yu Guang Pu Fen Xi; 2000 Aug; 20(4):585-8. PubMed ID: 12945385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New cross-talk measure of near-infrared spectroscopy and its application to wavelength combination optimization.
    Umeyama S; Yamada T
    J Biomed Opt; 2009; 14(3):034017. PubMed ID: 19566310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of differential pathlength factor from NIRS measurement in skeletal muscle.
    Koirala B; Concas A; Cincotti A; Sun Y; Hernández A; Goodwin ML; Gladden LB; Lai N
    Respir Physiol Neurobiol; 2024 Aug; 326():104283. PubMed ID: 38788987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of NIRS-based muscle oxygenation parameters by inclusion of adipose tissue thickness.
    Grieger S; Geraskin D; Steimers A; Kohl-Bareis M
    Adv Exp Med Biol; 2013; 789():131-136. PubMed ID: 23852486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the source-detector separation in near infrared spectroscopy for healthy and clinical applications.
    Wang L; Ayaz H; Izzetoglu M
    J Biophotonics; 2019 Nov; 12(11):e201900175. PubMed ID: 31291506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.