These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
361 related articles for article (PubMed ID: 10898680)
1. Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Friedrich CL; Moyles D; Beveridge TJ; Hancock RE Antimicrob Agents Chemother; 2000 Aug; 44(8):2086-92. PubMed ID: 10898680 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Wu M; Maier E; Benz R; Hancock RE Biochemistry; 1999 Jun; 38(22):7235-42. PubMed ID: 10353835 [TBL] [Abstract][Full Text] [Related]
3. Antimicrobial activity of cecropins. Moore AJ; Beazley WD; Bibby MC; Devine DA J Antimicrob Chemother; 1996 Jun; 37(6):1077-89. PubMed ID: 8836811 [TBL] [Abstract][Full Text] [Related]
4. A significantly enhanced antibacterial spectrum of D-enantiomeric lipopeptide bactenecin. Sim JY; Kim S; Lee J; Lim H; Kim HH; Park ZY; Kim JI Biochem Biophys Res Commun; 2019 Jun; 514(2):497-502. PubMed ID: 31056261 [TBL] [Abstract][Full Text] [Related]
5. Structure and mechanism of action of an indolicidin peptide derivative with improved activity against gram-positive bacteria. Friedrich CL; Rozek A; Patrzykat A; Hancock RE J Biol Chem; 2001 Jun; 276(26):24015-22. PubMed ID: 11294848 [TBL] [Abstract][Full Text] [Related]
6. Interaction of the cyclic antimicrobial cationic peptide bactenecin with the outer and cytoplasmic membrane. Wu M; Hancock RE J Biol Chem; 1999 Jan; 274(1):29-35. PubMed ID: 9867806 [TBL] [Abstract][Full Text] [Related]
7. Salt-resistant alpha-helical cationic antimicrobial peptides. Friedrich C; Scott MG; Karunaratne N; Yan H; Hancock RE Antimicrob Agents Chemother; 1999 Jul; 43(7):1542-8. PubMed ID: 10390200 [TBL] [Abstract][Full Text] [Related]
8. Antibacterial efficacy and membrane mechanism of action of the Decker T; Rautenbach M; Khan S; Khan W Microbiol Spectr; 2024 Jul; 12(7):e0295223. PubMed ID: 38842361 [TBL] [Abstract][Full Text] [Related]
9. Interaction of cationic peptides with lipoteichoic acid and gram-positive bacteria. Scott MG; Gold MR; Hancock RE Infect Immun; 1999 Dec; 67(12):6445-53. PubMed ID: 10569762 [TBL] [Abstract][Full Text] [Related]
10. Design, Synthesis, and Evaluation of Amphiphilic Cyclic and Linear Peptides Composed of Hydrophobic and Positively-Charged Amino Acids as Antibacterial Agents. Riahifard N; Mozaffari S; Aldakhil T; Nunez F; Alshammari Q; Alshammari S; Yamaki J; Parang K; Tiwari RK Molecules; 2018 Oct; 23(10):. PubMed ID: 30360400 [TBL] [Abstract][Full Text] [Related]
11. Binding of an antimicrobial peptide to bacterial cells: Interaction with different species, strains and cellular components. Savini F; Loffredo MR; Troiano C; Bobone S; Malanovic N; Eichmann TO; Caprio L; Canale VC; Park Y; Mangoni ML; Stella L Biochim Biophys Acta Biomembr; 2020 Aug; 1862(8):183291. PubMed ID: 32234322 [TBL] [Abstract][Full Text] [Related]
12. Role of amino acid residues within the disulfide loop of thanatin, a potent antibiotic peptide. Lee MK; Cha L; Lee SH; Hahm KS J Biochem Mol Biol; 2002 May; 35(3):291-6. PubMed ID: 12297012 [TBL] [Abstract][Full Text] [Related]
13. In vitro activities of membrane-active peptides against gram-positive and gram-negative aerobic bacteria. Giacometti A; Cirioni O; Greganti G; Quarta M; Scalise G Antimicrob Agents Chemother; 1998 Dec; 42(12):3320-4. PubMed ID: 9835539 [TBL] [Abstract][Full Text] [Related]
14. Enhanced membrane disruption and antibiotic action against pathogenic bacteria by designed histidine-rich peptides at acidic pH. Mason AJ; Gasnier C; Kichler A; Prévost G; Aunis D; Metz-Boutigue MH; Bechinger B Antimicrob Agents Chemother; 2006 Oct; 50(10):3305-11. PubMed ID: 17005809 [TBL] [Abstract][Full Text] [Related]
15. Fast and potent bactericidal membrane lytic activity of PaDBS1R1, a novel cationic antimicrobial peptide. Irazazabal LN; Porto WF; Fensterseifer ICM; Alves ESF; Matos CO; Menezes ACS; Felício MR; Gonçalves S; Santos NC; Ribeiro SM; Humblot V; Lião LM; Ladram A; Franco OL Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):178-190. PubMed ID: 30463701 [TBL] [Abstract][Full Text] [Related]
16. Membrane interaction and antibacterial properties of chensinin-1, an antimicrobial peptide with atypical structural features from the skin of Rana chensinensis. Shang D; Sun Y; Wang C; Wei S; Ma L; Sun L Appl Microbiol Biotechnol; 2012 Dec; 96(6):1551-60. PubMed ID: 22581068 [TBL] [Abstract][Full Text] [Related]
17. Rational design, conformational analysis and membrane-penetrating dynamics study of Bac2A-derived antimicrobial peptides against gram-positive clinical strains isolated from pyemia. Bai X; Chen X J Theor Biol; 2019 Jul; 473():44-51. PubMed ID: 30917919 [TBL] [Abstract][Full Text] [Related]
18. Design and synthesis of new N-terminal fatty acid modified-antimicrobial peptide analogues with potent in vitro biological activity. Zhong C; Liu T; Gou S; He Y; Zhu N; Zhu Y; Wang L; Liu H; Zhang Y; Yao J; Ni J Eur J Med Chem; 2019 Nov; 182():111636. PubMed ID: 31466017 [TBL] [Abstract][Full Text] [Related]
19. The importance of bacterial membrane composition in the structure and function of aurein 2.2 and selected variants. Cheng JT; Hale JD; Elliott M; Hancock RE; Straus SK Biochim Biophys Acta; 2011 Mar; 1808(3):622-33. PubMed ID: 21144817 [TBL] [Abstract][Full Text] [Related]
20. Antibacterial activity and mechanism of action of tick defensin against Gram-positive bacteria. Nakajima Y; Ishibashi J; Yukuhiro F; Asaoka A; Taylor D; Yamakawa M Biochim Biophys Acta; 2003 Dec; 1624(1-3):125-30. PubMed ID: 14642822 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]