These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 10898860)

  • 1. Effect of diffusive and convective substrate transport on biofilm structure formation: a two-dimensional modeling study.
    Picioreanu C; Van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 2000 Sep; 69(5):504-15. PubMed ID: 10898860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A theoretical study on the effect of surface roughness on mass transport and transformation in biofilms.
    Picioreanu C; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 2000 May; 68(4):355-69. PubMed ID: 10745204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the influence of biofilm surface roughness on mass transfer by combining optical coherence tomography and two-dimensional modeling.
    Li C; Wagner M; Lackner S; Horn H
    Biotechnol Bioeng; 2016 May; 113(5):989-1000. PubMed ID: 26498328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional model of biofilm detachment caused by internal stress from liquid flow.
    Picioreanu C; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 2001 Jan; 72(2):205-18. PubMed ID: 11114658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling on the effect of diffusive and convective substrate transport for biofilm.
    Khabibor Rahman N; Bakar MZ; Hekarl Uzir M; Harun Kamaruddin A
    Math Biosci; 2009 Apr; 218(2):130-7. PubMed ID: 19563738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach.
    Picioreanu C; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1998 Apr; 58(1):101-16. PubMed ID: 10099266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new combined differential-discrete cellular automaton approach for biofilm modeling: application for growth in gel beads.
    Picioreanu C; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1998 Mar; 57(6):718-31. PubMed ID: 10099251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Individual-based modelling of biofilms.
    Kreft JU; Picioreanu C; Wimpenny JW; van Loosdrecht MC
    Microbiology (Reading); 2001 Nov; 147(Pt 11):2897-912. PubMed ID: 11700341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detachment and diffusive-convective transport in an evolving heterogeneous two-dimensional biofilm hybrid model.
    Luna E; Domínguez-Zacarias G; Ferreira CP; Velasco-Hernandez JX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061909. PubMed ID: 15697404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-domain approach for studying multiphase transport phenomena in biofilm growing systems.
    Oliveros-Muñoz JM; Calderón-Alvarado MP; Martínez-González GM; Navarrete-Bolaños JL; Jiménez-Islas H
    Biofouling; 2017 Apr; 33(4):336-351. PubMed ID: 28403635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of biofilm systems: a review.
    Horn H; Lackner S
    Adv Biochem Eng Biotechnol; 2014; 146():53-76. PubMed ID: 25163572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating trends in biofilm density using the UMCCA model.
    Laspidou CS; Rittmann BE
    Water Res; 2004; 38(14-15):3362-72. PubMed ID: 15276753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic characterization of external and internal mass transport in heterotrophic biofilms from microsensors measurements.
    Guimerà X; Dorado AD; Bonsfills A; Gabriel G; Gabriel D; Gamisans X
    Water Res; 2016 Oct; 102():551-560. PubMed ID: 27423049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissipative-particle-dynamics model of biofilm growth.
    Xu Z; Meakin P; Tartakovsky A; Scheibe TD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066702. PubMed ID: 21797511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofilm development in a membrane-aerated biofilm reactor: effect of flow velocity on performance.
    Casey E; Glennon B; Hamer G
    Biotechnol Bioeng; 2000 Feb; 67(4):476-86. PubMed ID: 10620763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR investigation of water diffusion in different biofilm structures.
    Herrling MP; Weisbrodt J; Kirkland CM; Williamson NH; Lackner S; Codd SL; Seymour JD; Guthausen G; Horn H
    Biotechnol Bioeng; 2017 Dec; 114(12):2857-2867. PubMed ID: 28755486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment.
    Duddu R; Chopp DL; Moran B
    Biotechnol Bioeng; 2009 May; 103(1):92-104. PubMed ID: 19213021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth.
    Carniello V; Peterson BW; van der Mei HC; Busscher HJ
    Adv Colloid Interface Sci; 2018 Nov; 261():1-14. PubMed ID: 30376953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pore-network modeling of biofilm evolution in porous media.
    Ezeuko CC; Sen A; Grigoryan A; Gates ID
    Biotechnol Bioeng; 2011 Oct; 108(10):2413-23. PubMed ID: 21520022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of pollutant diffusion coefficients in naturally formed biofilms using a single tube extractive membrane bioreactor.
    Zhang S; Splendiani A; dos Santos LM; Livingston AG
    Biotechnol Bioeng; 1998 Jul; 59(1):80-9. PubMed ID: 10099317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.