These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 10898861)

  • 1. Optical properties of Nannochloropsis sp and their application to remote estimation of cell mass.
    Gitelson AA; Grits YA; Etzion D; Ning Z; Richmond A
    Biotechnol Bioeng; 2000 Sep; 69(5):516-25. PubMed ID: 10898861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands.
    Gilerson AA; Gitelson AA; Zhou J; Gurlin D; Moses W; Ioannou I; Ahmed SA
    Opt Express; 2010 Nov; 18(23):24109-25. PubMed ID: 21164758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of bio-optical parameter variability and uncertainties in reflectance measurements on the remote estimation of chlorophyll-a concentration in turbid productive waters: modeling results.
    Dall'Olmo G; Gitelson AA
    Appl Opt; 2006 May; 45(15):3577-92. PubMed ID: 16708105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variations in the optical scattering properties of phytoplankton cultures.
    Zhou W; Wang G; Sun Z; Cao W; Xu Z; Hu S; Zhao J
    Opt Express; 2012 May; 20(10):11189-206. PubMed ID: 22565742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Comparison of chlorophyll a concentration estimation in Taihu Lake using different methods].
    Li YL; Zhang YL; Li JS; Liu ML
    Huan Jing Ke Xue; 2009 Mar; 30(3):680-6. PubMed ID: 19432312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retrieval of phytoplankton size from bio-optical measurements: theory and applications.
    Roy S; Sathyendranath S; Platt T
    J R Soc Interface; 2011 May; 8(58):650-60. PubMed ID: 21084343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of variability in the inherent optical properties on estimations of chlorophyll a by remote sensing in Swedish freshwaters.
    Strömbeck N; Pierson DC
    Sci Total Environ; 2001 Mar; 268(1-3):123-37. PubMed ID: 11315736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms.
    Woźniak SB; Stramski D
    Appl Opt; 2004 Jun; 43(17):3489-503. PubMed ID: 15219032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Quantitative retrieval of phytoplankton pigment based on water inherent optical properties in Lake Taihu].
    Zhang YL; Qin BQ
    Huan Jing Ke Xue; 2006 Dec; 27(12):2439-44. PubMed ID: 17304837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remote chlorophyll-a estimates for inland waters based on a cluster-based classification.
    Shi K; Li Y; Li L; Lu H; Song K; Liu Z; Xu Y; Li Z
    Sci Total Environ; 2013 Feb; 444():1-15. PubMed ID: 23262320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra.
    Maccioni A; Agati G; Mazzinghi P
    J Photochem Photobiol B; 2001 Aug; 61(1-2):52-61. PubMed ID: 11485848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of inherent optical properties variability on the chlorophyll retrieval from ocean color remote sensing: an in situ approach.
    Hubert L; Lubac B; Dessailly D; Duforet-Gaurier L; Vantrepotte V
    Opt Express; 2010 Sep; 18(20):20949-59. PubMed ID: 20940990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inversion of spectral absorption coefficients to infer phytoplankton size classes, chlorophyll concentration, and detrital matter.
    Zhang X; Huot Y; Bricaud A; Sosik HM
    Appl Opt; 2015 Jun; 54(18):5805-16. PubMed ID: 26193033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing.
    Bailey SW; Franz BA; Werdell PJ
    Opt Express; 2010 Mar; 18(7):7521-7. PubMed ID: 20389774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linking phytoplankton pigment composition and optical properties: A framework for developing remote-sensing metrics for monitoring cyanobacteria.
    Hmimina G; Hulot FD; Humbert JF; Quiblier C; Tambosco K; Lemaire BJ; Vinçon-Leite B; Audebert L; Soudani K
    Water Res; 2019 Jan; 148():504-514. PubMed ID: 30414535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effects of harmful algal bloom on bio-optical properties of coastal water].
    Wang L; Zhao DZ; Yang JH; Liu YJ; Wang X; Zou XG
    Huan Jing Ke Xue; 2011 Oct; 32(10):2855-60. PubMed ID: 22279892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between apparent optical properties and photosynthetic pigments in the sub-alpine Lake Iseo.
    Pepe M; Giardino C; Borsani G; Cardoso AC; Chiaudani G; Premazzi G; Rodari E; Zilioli E
    Sci Total Environ; 2001 Mar; 268(1-3):31-45. PubMed ID: 11315745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Measuring the Spectrum of Extinction Coefficient and Reflectance for Cadmium Compounds from 400 to 900 nm].
    Liang YH; Deng RR; Liu YM; Lin L; Qin Y; He YQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Dec; 36(12):4006-12. PubMed ID: 30235510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea.
    Simis SG; Ylöstalo P; Kallio KY; Spilling K; Kutser T
    PLoS One; 2017; 12(4):e0173357. PubMed ID: 28384157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in the absorption and scattering properties in the near-infrared region during the growth of Bacillus subtilis in liquid culture.
    Dzhongova E; Harwood CR; Thennadil SN
    Appl Spectrosc; 2009 Jan; 63(1):25-32. PubMed ID: 19146716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.