These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 10898952)
1. The heme-containing N-fragment (residues 1-56) of cytochrome c is a bis-histidine functional system. Santucci R; Fiorucci L; Sinibaldi F; Polizio F; Desideri A; Ascoli F Arch Biochem Biophys; 2000 Jul; 379(2):331-6. PubMed ID: 10898952 [TBL] [Abstract][Full Text] [Related]
2. Folding of horse cytochrome c in the reduced state. Bhuyan AK; Udgaonkar JB J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255 [TBL] [Abstract][Full Text] [Related]
3. Identification of the predominant non-native histidine ligand in unfolded cytochrome c. Colón W; Wakem LP; Sherman F; Roder H Biochemistry; 1997 Oct; 36(41):12535-41. PubMed ID: 9376358 [TBL] [Abstract][Full Text] [Related]
4. A model for the misfolded bis-His intermediate of cytochrome c: the 1-56 N-fragment. Santoni E; Scatragli S; Sinibaldi F; Fiorucci L; Santucci R; Smulevich G J Inorg Biochem; 2004 Jun; 98(6):1067-77. PubMed ID: 15149817 [TBL] [Abstract][Full Text] [Related]
5. Non-native heme-histidine ligation promotes microsecond time scale secondary structure formation in reduced horse heart cytochrome c. Chen E; Abel CJ; Goldbeck RA; Kliger DS Biochemistry; 2007 Oct; 46(43):12463-72. PubMed ID: 17914866 [TBL] [Abstract][Full Text] [Related]
6. Rupture of the hydrogen bond linking two Omega-loops induces the molten globule state at neutral pH in cytochrome c. Sinibaldi F; Piro MC; Howes BD; Smulevich G; Ascoli F; Santucci R Biochemistry; 2003 Jun; 42(24):7604-10. PubMed ID: 12809517 [TBL] [Abstract][Full Text] [Related]
7. Measuring denatured state energetics: deviations from random coil behavior and implications for the folding of iso-1-cytochrome c. Godbole S; Hammack B; Bowler BE J Mol Biol; 2000 Feb; 296(1):217-28. PubMed ID: 10656828 [TBL] [Abstract][Full Text] [Related]
8. Bis-methionine ligation to heme iron in mutants of cytochrome b562. 1. Spectroscopic and electrochemical characterization of the electronic properties. Barker PD; Nerou EP; Cheesman MR; Thomson AJ; de Oliveira P; Hill HA Biochemistry; 1996 Oct; 35(42):13618-26. PubMed ID: 8885841 [TBL] [Abstract][Full Text] [Related]
9. Coupled kinetic traps in cytochrome c folding: His-heme misligation and proline isomerization. Pierce MM; Nall BT J Mol Biol; 2000 May; 298(5):955-69. PubMed ID: 10801361 [TBL] [Abstract][Full Text] [Related]
10. Characterization of equilibrium intermediates in denaturant-induced unfolding of ferrous and ferric cytochromes c using magnetic circular dichroism, circular dichroism, and optical absorption spectroscopies. Thomas YG; Goldbeck RA; Kliger DS Biopolymers; 2000; 57(1):29-36. PubMed ID: 10679637 [TBL] [Abstract][Full Text] [Related]
11. Role of ligand substitution in ferrocytochrome c folding. Telford JR; Tezcan FA; Gray HB; Winkler JR Biochemistry; 1999 Feb; 38(6):1944-9. PubMed ID: 10026276 [TBL] [Abstract][Full Text] [Related]
12. Cytochrome c(553), a small heme protein that lacks misligation in its unfolded state, folds with rapid two-state kinetics. Guidry J; Wittung-Stafshede P J Mol Biol; 2000 Aug; 301(4):769-73. PubMed ID: 10966783 [TBL] [Abstract][Full Text] [Related]
13. The heme iron coordination of unfolded ferric and ferrous cytochrome c in neutral and acidic urea solutions. Spectroscopic and electrochemical studies. Fedurco M; Augustynski J; Indiani C; Smulevich G; Antalík M; Bánó M; Sedlák E; Glascock MC; Dawson JH Biochim Biophys Acta; 2004 Dec; 1703(1):31-41. PubMed ID: 15588700 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of electron-withdrawing group effects on heme binding in designed proteins: implications for heme a in cytochrome c oxidase. Zhuang J; Amoroso JH; Kinloch R; Dawson JH; Baldwin MJ; Gibney BR Inorg Chem; 2006 Jun; 45(12):4685-94. PubMed ID: 16749832 [TBL] [Abstract][Full Text] [Related]
15. Cytochrome c folding traps are not due solely to histidine-heme ligation: direct demonstration of a role for N-terminal amino group-heme ligation. Hammack B; Godbole S; Bowler BE J Mol Biol; 1998 Feb; 275(5):719-24. PubMed ID: 9480763 [TBL] [Abstract][Full Text] [Related]
16. Characterization of a structural model of membrane bound cytochrome c-550 from Bacillus subtilis. David PS; Dutt PS; Wathen B; Jia Z; Hill BC Arch Biochem Biophys; 2000 May; 377(1):22-30. PubMed ID: 10775437 [TBL] [Abstract][Full Text] [Related]
17. Denatured state thermodynamics: residual structure, chain stiffness and scaling factors. Hammack BN; Smith CR; Bowler BE J Mol Biol; 2001 Aug; 311(5):1091-104. PubMed ID: 11531342 [TBL] [Abstract][Full Text] [Related]
18. 1H NMR structural characterization of the cytochrome c modifications in a micellar environment. Chevance S; Le Rumeur E; de Certaines JD; Simonneaux G; Bondon A Biochemistry; 2003 Dec; 42(51):15342-51. PubMed ID: 14690444 [TBL] [Abstract][Full Text] [Related]
19. Strategic roles of axial histidines in structure formation and redox regulation of tetraheme cytochrome c3. Takayama Y; Werbeck ND; Komori H; Morita K; Ozawa K; Higuchi Y; Akutsu H Biochemistry; 2008 Sep; 47(36):9405-15. PubMed ID: 18702516 [TBL] [Abstract][Full Text] [Related]
20. Redox chemistry of low-pH forms of tetrahemic cytochrome c3. Santos M; Dos Santos MM; Gonçalves ML; Costa C; Romão JC; Moura JJ J Inorg Biochem; 2006 Dec; 100(12):2009-16. PubMed ID: 17084898 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]