These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 10899196)

  • 1. Robustness and variability of neuronal coding by amplitude-sensitive afferents in the weakly electric fish eigenmannia.
    Kreiman G; Krahe R; Metzner W; Koch C; Gabbiani F
    J Neurophysiol; 2000 Jul; 84(1):189-204. PubMed ID: 10899196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coding of time-varying electric field amplitude modulations in a wave-type electric fish.
    Wessel R; Koch C; Gabbiani F
    J Neurophysiol; 1996 Jun; 75(6):2280-93. PubMed ID: 8793741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sex recognition and neuronal coding of electric organ discharge waveform in the pulse-type weakly electric fish, Hypopomus occidentalis.
    Shumway CA; Zelick RD
    J Comp Physiol A; 1988 Aug; 163(4):465-78. PubMed ID: 3184009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Logarithmic time course of sensory adaptation in electrosensory afferent nerve fibers in a weakly electric fish.
    Xu Z; Payne JR; Nelson ME
    J Neurophysiol; 1996 Sep; 76(3):2020-32. PubMed ID: 8890311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous detection of weak sensory signals in afferent spike trains: the role of anti-correlated interspike intervals in detection performance.
    Goense JB; Ratnam R
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Oct; 189(10):741-59. PubMed ID: 12920548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonrenewal statistics of electrosensory afferent spike trains: implications for the detection of weak sensory signals.
    Ratnam R; Nelson ME
    J Neurosci; 2000 Sep; 20(17):6672-83. PubMed ID: 10964972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural heterogeneities influence envelope and temporal coding at the sensory periphery.
    Savard M; Krahe R; Chacron MJ
    Neuroscience; 2011 Jan; 172():270-84. PubMed ID: 21035523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulus encoding and feature extraction by multiple sensory neurons.
    Krahe R; Kreiman G; Gabbiani F; Koch C; Metzner W
    J Neurosci; 2002 Mar; 22(6):2374-82. PubMed ID: 11896176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feature extraction by burst-like spike patterns in multiple sensory maps.
    Metzner W; Koch C; Wessel R; Gabbiani F
    J Neurosci; 1998 Mar; 18(6):2283-300. PubMed ID: 9482813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From stimulus encoding to feature extraction in weakly electric fish.
    Gabbiani F; Metzner W; Wessel R; Koch C
    Nature; 1996 Dec; 384(6609):564-7. PubMed ID: 8955269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coding of stimuli by ampullary afferents in Gnathonemus petersii.
    Engelmann J; Gertz S; Goulet J; Schuh A; von der Emde G
    J Neurophysiol; 2010 Oct; 104(4):1955-68. PubMed ID: 20685928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spike-timing precision underlies the coding efficiency of auditory receptor neurons.
    Rokem A; Watzl S; Gollisch T; Stemmler M; Herz AV; Samengo I
    J Neurophysiol; 2006 Apr; 95(4):2541-52. PubMed ID: 16354733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and modeling of P-type electrosensory afferent responses to amplitude modulations in a wave-type electric fish.
    Nelson ME; Xu Z; Payne JR
    J Comp Physiol A; 1997 Nov; 181(5):532-44. PubMed ID: 9373958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale spike train variability in primary electrosensory afferents.
    Nelson ME
    J Physiol Paris; 2002; 96(5-6):507-16. PubMed ID: 14692498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noise-induced transition to bursting in responses of paddlefish electroreceptor afferents.
    Neiman AB; Yakusheva TA; Russell DF
    J Neurophysiol; 2007 Nov; 98(5):2795-806. PubMed ID: 17855580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Representation of accurate temporal information in the electrosensory system of the African electric fish, Gymnarchus niloticus.
    Guo YX; Kawasaki M
    J Neurosci; 1997 Mar; 17(5):1761-8. PubMed ID: 9030634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A time-comparison circuit in the electric fish midbrain. I. Behavior and physiology.
    Carr CE; Heiligenberg W; Rose GJ
    J Neurosci; 1986 Jan; 6(1):107-19. PubMed ID: 3944612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A role of burst firings in encoding of spatiotemporally-varying stimulus.
    Fujita K; Kashimori Y; Zheng M; Kambara T
    Biosystems; 2004; 76(1-3):21-31. PubMed ID: 15351127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chaos-induced modulation of reliability boosts output firing rate in downstream cortical areas.
    Tiesinga PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031912. PubMed ID: 15089327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feedforward Thalamocortical Connectivity Preserves Stimulus Timing Information in Sensory Pathways.
    Wang HP; Garcia JW; Sabottke CF; Spencer DJ; Sejnowski TJ
    J Neurosci; 2019 Sep; 39(39):7674-7688. PubMed ID: 31270157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.