BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 10899637)

  • 1. Why is creatine kinase a dimer? Evidence for cooperativity between the two subunits.
    Hornemann T; Rutishauser D; Wallimann T
    Biochim Biophys Acta; 2000 Jul; 1480(1-2):365-73. PubMed ID: 10899637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creatine kinase: the reactive cysteine is required for synergism but is nonessential for catalysis.
    Furter R; Furter-Graves EM; Wallimann T
    Biochemistry; 1993 Jul; 32(27):7022-9. PubMed ID: 8334132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The active site histidines of creatine kinase. A critical role of His 61 situated on a flexible loop.
    Forstner M; Müller A; Stolz M; Wallimann T
    Protein Sci; 1997 Feb; 6(2):331-9. PubMed ID: 9041634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subunit conformation and dynamics in a heterodimeric protein: studies of the hybrid isozyme of creatine kinase.
    Grossman SH; Sellers DS
    Biochim Biophys Acta; 1998 Sep; 1387(1-2):447-53. PubMed ID: 9748661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of an active monomer of rabbit muscle creatine kinase by site-directed mutagenesis: the effect of quaternary structure on catalysis and stability.
    Cox JM; Davis CA; Chan C; Jourden MJ; Jorjorian AD; Brym MJ; Snider MJ; Borders CL; Edmiston PL
    Biochemistry; 2003 Feb; 42(7):1863-71. PubMed ID: 12590573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the catalytic site of creatine kinase by site-directed mutagenesis.
    Lin L; Perryman MB; Friedman D; Roberts R; Ma TS
    Biochim Biophys Acta; 1994 May; 1206(1):97-104. PubMed ID: 8186255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional differences between dimeric and octameric mitochondrial creatine kinase.
    Kaldis P; Wallimann T
    Biochem J; 1995 Jun; 308 ( Pt 2)(Pt 2):623-7. PubMed ID: 7772050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limited proteolysis of creatine kinase. Implications for three-dimensional structure and for conformational substrates.
    Wyss M; James P; Schlegel J; Wallimann T
    Biochemistry; 1993 Oct; 32(40):10727-35. PubMed ID: 8399219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altering creatine kinase isoenzymes in transgenic mouse muscle by overexpression of the B subunit.
    Brosnan MJ; Raman SP; Chen L; Koretsky AP
    Am J Physiol; 1993 Jan; 264(1 Pt 1):C151-60. PubMed ID: 8430764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of brain-type creatine kinase at 1.41 A resolution.
    Eder M; Schlattner U; Becker A; Wallimann T; Kabsch W; Fritz-Wolf K
    Protein Sci; 1999 Nov; 8(11):2258-69. PubMed ID: 10595529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteolytic susceptibility of creatine kinase isozymes and arginine kinase.
    Ercan A; Grossman SH
    Biochem Biophys Res Commun; 2003 Jul; 306(4):1014-8. PubMed ID: 12821144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific proteolytic modification of creatine kinase isoenzymes. Implication of C-terminal involvement in enzymic activity but not in subunit-subunit recognition.
    Lebherz HG; Burke T; Shackelford JE; Strickler JE; Wilson KJ
    Biochem J; 1986 Jan; 233(1):51-6. PubMed ID: 3006663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two different B-type creatine kinase subunits dimerize in a tissue-specific manner.
    Quest AF; Eppenberger HM; Wallimann T
    FEBS Lett; 1990 Mar; 262(2):299-304. PubMed ID: 2335210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybridization of matrix-bound MM-creatine kinase with BB-creatine kinase and arginine kinase.
    Reddy SR; Watts DC
    Comp Biochem Physiol Biochem Mol Biol; 1994 May; 108(1):73-8. PubMed ID: 8205393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The isoenzyme-diagnostic regions of muscle-type creatine kinase, the M-260 and M-300 box, are not responsible for its binding to the myofibrillar M-band.
    Stolz M; Kraft T; Wallimann T
    Eur J Cell Biol; 1998 Sep; 77(1):1-9. PubMed ID: 9808283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asparagine 285 plays a key role in transition state stabilization in rabbit muscle creatine kinase.
    Borders CL; MacGregor KM; Edmiston PL; Gbeddy ER; Thomenius MJ; Mulligan GB; Snider MJ
    Protein Sci; 2003 Mar; 12(3):532-7. PubMed ID: 12592023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rabbit muscle creatine kinase: consequences of the mutagenesis of conserved histidine residues.
    Chen LH; Borders CL; Vásquez JR; Kenyon GL
    Biochemistry; 1996 Jun; 35(24):7895-902. PubMed ID: 8672491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstitution of active octameric mitochondrial creatine kinase from two genetically engineered fragments.
    Gross M; Wyss M; Furter-Graves EM; Wallimann T; Furter R
    Protein Sci; 1996 Feb; 5(2):320-30. PubMed ID: 8745410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of kinetic constants of creatine kinase isoforms.
    Matsushima K; Uda K; Ishida K; Kokufuta C; Iwasaki N; Suzuki T
    Int J Biol Macromol; 2006 Mar; 38(2):83-8. PubMed ID: 16451808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial creatine kinase from human heart muscle: purification and characterization of the crystallized isoenzyme.
    Blum HE; Deus B; Gerok W
    J Biochem; 1983 Oct; 94(4):1247-57. PubMed ID: 6418727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.